
An hour on complex numbers Harvard University, 9/23/04, O.Knill

”The shortest path between two truths in the real domain passes through the complex domain.”

Jacques Hadamard (1865-1963)

THE SYMBOL I. Introducing the symbol i =
√
−1 and extending

all usual calculation rules using i2 = −1 leads to the algebra of
complex numbers z = a+ib. For example, z = 17−12i is a complex
number. Real numbers like z = 3.2 are considered complex numbers
too. The mathematican Johann Carl Friedrich Gauss (1777-1855)
was one of the first to use complex numbers seriously in his research
even so in as late as 1825 still claimed that ”the true metaphysics
of the square root of -1 is elusive”.

EULER FORMULA. The identity

cos(θ) + i sin(θ) = eiθ

can be seen by staring at the power series cos(x) = 1−x2/2!+x4/4!−
.., sin(x) = x− x3/3! + x5/5!... and ex = 1 + x + x2/2! + x3/3! + ....
If you should have defined sin(x) = (ex−e−x)/(2i), cos(x) = (ex +
e−x)/2, the proof of the Euler formula is obvious.

POLAR REPRESENTATION. Because complex num-
bers z = x + iy can be realized as vectors (x, y) in
the plane, we can represent them in polar coordinates
z = x + iy = r cos(θ) + ir sin(θ). Eulers formula gives
z = reiθ. The plane is also called the complex plane
or the Gauss plane.
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ADDITION. z = x + iy, w = u + iv z + w = (x + u) +
i(u + v). Adding −w = u + iv to z is called subtraction
and denoted by z−w. In the Gauss plane, addition can
be done by drawing the parallelogram spanned by the
vectors (x, y) and (u, v) to get the vector (x+u, y + v).

Examples: (5 + 7i) + (3 − 4i) = 2 + 3i.
(3 + i) − (2 + i) = 1. x

y

z=x+i y

w=u+i v
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MULTIPLICATION. With z = x + iy and w = u + iv
define zw = (xu−yv)+ i(xv−uy). Because multiplying
z = reiθ and with w = seiφ gives zw = rsei(θ+φ), we see
that the length of the product |zw| is the product of the
lengths |z||w| of the z and w and that the polar angle
θ + φ of zw is the sum of the polar angles θ and φ of z
and w.

Examples: (3 + 2i)(1 − i) = 5 − i.
(1 + i)2 = 2i.
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DE MOIVRE MAGIC. With z = eiθ, we have zn = einθ and so

(cos(θ) + i sin(θ))n = einθ

Writing out the real and imaginary part leads to interesting
identities. For example, for n = 3, we get

cos(3θ) + i sin(3θ) = (cos(θ) + i sin(θ))3 =

cos3(θ) − 3 cos(θ) sin2(θ) + i (3 cos2(θ) sin(θ) − sin3(θ)) .

Comparing real and imaginary parts gives identities which would
be harder to derive without this magical stunt.

AN AMAZING FORMULA.

1 + eiπ = 0

combines the constants 0, 1, e, π in a wonderful way. It is consid-
ered one of the 5 most beautiful formulas in mathematics. Richard
Feynmann called it as a 15 year old

”the most remarkable formula in math”.

In the book of E. Kasner and J. Newman, ”Mathematics and the
Imagination”, Benjamin Peirce is quoted after proving this formula
here in front of a Harvard class:

Gentlemen, that is surely true, it is absolutely paradoxi-
cal; we cannot understand it, and we don’t know what it
means. But we have proved it, and therefore, we know it
is the truth.

We can only repeat that statement modifying the start of the sen-
tence to ”Ladies and Gentlemen” of course.



COMPLEX CONJUGATE.

The complex conjugate of z = x + iy is z = x − iy.
Example: 3 + 4i = 3 − 4i.

Example: 3 + 6i = 3 − 6i.

ABSOLUTE VALUE |z| of a complex number z = x+iy
is

√

x2 + y2. We can also write |z|2 = zz. The absolute
value is also called the modulus.

Example: |1 + 2i| =
√

12 + 22 =
√

5.
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DIVISION. With z = x + iy and w = u + iv, we have
z/w = zw/ww = zw/|w|2 = (xu + yv)/(u2 + v2) +
i(−xv − uy)/(u2 + v2).

Examples: 1/i = −i.
1/(1 + i) = (1 − i)/

√
2.
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REAL EXP.
The graph of the real function exp is monotone
and above the x axes. Because exp′(x) = exp(x)
the slope of the graph grows exponentially too.

REAL LOG.
The graph of the real function log is monotone
too and defined only on the positive x-axes. Since
log′(x) = 1/x the slope of the graph becomes
smaller and smaller for larger x.

EXP. We can extend the definition ez to any complex
number z with ex+iy = exeiy = ex cos(y) + ex sin(y)i.
Understanding the ”graph” of the function ”exp” is not

so easy because we would have to plot for each z = x+iy
the result exp(z) = u + iv. In multi-variable calculus,
you will learn to work with functions of several variables.
A possibility to visualize ”exp” is to draw the vector
(u, v) at the point (x, y).

Examples: e1+iπ = eeiπ = −e.
e2−3i = e2e−i = e2 cos(3) − ie2 sin(3). -1 -0.5 0.5 1 1.5
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LOG. A value log(z) can be defined for any complex number z
which is different from 0. This is done by log(z) = log |z|+ iarg(z),
where arg(z) = θ is the angle when writing z = reiθ. Using
the polar representation, you can verify that exp(log(z)) = z and
log exp(z) = z. Jost Bürgi (1552-1632) developed logarithms inde-
pendently of John Napier (1550-1617). While Napier’s approach was algebraic,

Burgi’s point of view was geometric. It is believed that Bürgi created a table of logarithms before Napier

by several years, but did not publish it until later. Johann Kepler who admired Bürgi as a mathemati-

cian states in the introduction to his Rudolphine Tables (1627): ”... the accents in calculation led Justus

Byrgius (Jost Bürgi) on the way to these very logarithms many years before Napier’s system appeared; but

being an indolent man, and very uncommunicative, instead of rearing up his child for the public benefit he

deserted it in the birth.”

Examples: log(i) = iπ/2
log(3 + 4i) = 5 + arctan(4/3)i.

ARBITRARY EXPONENTIALS. Using the log, we can define zw for two complex numbers
z, w by zw = ew log(z).

Example: (1 + i)2+i = e(2+i) log(1+i) = e(2+i)
√

2π/4 = e2
√

2π/4(cos(
√

2π/4) + i sin(
√

2π/4)).

EXP AND LOG RULES. The usual rules for exp and log carry over to the complex:

• exp(z + w) = exp(z) exp(w)

• (ez)w = ezw.

• log(zw) = log(z) log(w)

• log(zw) = w log(z)

Examples: (e1+i · e1−i)2−i = (e2)(2−i) = e(4−2i) = e4e−2i = e4 cos(2) − ie4 sin(2).
log((3 + 4i)(1−i)) = (1 − i) log(3 + 4i) = (1 − i)(5 + iarctan(4

3
)).



MORE EXAMPLES AND A MYSTERIOUS FORMULA.

• log(i) = log |i| + iarg(i) = iπ/2.

• ii = ei log(i) = ei(iπ/2) = e−π/2.

• (−1)i = e−π.

The last two examples are remarkable! The second formula implies

π = log(i)2
i

. To cite Harvards Benjamin Peirce (1809-1880) again:

he called it a ”mysterious formula”.
By the way: the third formula can be used to show that e−π is transcendental, which means that it is not the root of a polynomial with integer

coefficients, a problem posed by David Hilbert in 1900 which he thought to be more difficult than the Riemann Hypothesis but which was solved by

the Russian mathematician Gelfond in 1929.

SQUARE ROOT. z = reiθ has the square root w =√
reiθ/2. But since z = re2πiθ also, we have an other

root
√

reiθ/2+π = −w. Indeed both w and −w satisfy
w2 = −1. We see that any complex number different
from 0 has exactly two square roots and that the sum
of these two roots is zero.
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EXAMPLES. For z = 3 + 4i, one has z = 5eiφ with φ = arctan(4/3) and so
√

z = ±
√

5eiφ/2.

N-TH ROOTS. zn = w = riθ has the solutions z =
w1/n = r1/neiθ/n+k2π/n. All these solutions are located
on a circle of radius |z|1/n.

Examples: The fourth roots of 1 are the com-
plex numbers 1, i,−1,−i.
The third roots of 8i are the complex num-
bers 2eiπ/12, 2ei5π/12, 2ei9π/12.

EXAMPLE. For z = −i, find all the 5’th roots. The so-
lutions are zk = e−iπ/2+kπ/5, where k = 0, 1, 2, 3, 4. The
points are located on a regular pentagon. The length of
a side is |z1 − z2|. The length of a diagonal is |z1 − z3|.
We can compute that the ratio of the diagonal length
and the side length is the golden ratio (

√
5+1)/2, one

of the most remarkable numbers in mathematics. This
is why the pentagon often appears in ”magic”. An example

is the book ”The amulet of Samarkand” by Jonathan Stroud, I just read.

TRIGONOMETRIC IDENTITIES. More trigonometric identities can be derived similarly to
the de Moivre magic: the Euler formula eix = cos(x) + i sin(x) implies

cos(x + y) + i sin(x + y) = ei(x+y) = eixeiy = (cos(x) + i sin(x))(cos(y) + i sin(y))

which leads to trigonometric identities by comparing real and imaginary part

cos(x + y) = cos(x) cos(y) − sin(x) sin(y) sin(x + y) = cos(x) sin(y) + sin(x) cos(y)

In the special case x = y, one gets the important identities

cos(2x) = cos2(x) − sin2(x), sin(2x) = 2 sin(x) cos(x) .

By adding up identities for x + y and x − y, we get

cos(x − y) + cos(x + y) = 2 cos(x) cos(y), sin(x + y) + sin(x − y) = 2 sin(x) cos(y)

Because cos(x) = sin(x + π/2), we get also

cos(x − y) − cos(x + y) = 2 sin(x) sin(y) .

All together, we have the useful multiplication identities

sin(x) sin(y) =
cos(x−y)−cos(x+y)

2

cos(x) cos(y) =
cos(x−y)+cos(x+y)

2

sin(x) cos(y) =
sin(x+y)+sin(x−y)

2

WHERE ARE COMPLEX NUMBERS USED?

• Mechanics: like describing epicycles:
eit + eikt.

• Fourier series: simplifications.

• Geometry: i.e. find the length of a di-
agonal in a pentagon.

• Quantum mechanics: wave functions are
complex valued, path integrals using
imaginary time.

• Integration like
∫

sin2(x)dx =
∫

(eix −
e−ix)2/(2i)2dx

• Simplifying trigonometry

• Linear algebra: linearization.

• Differential equations appearing in elec-
trotechnics

• Statistics: tool to compute moments like
variance

• Particle physics: symmetry groups are
complex matrices

• Finding real integrals.



BEYOND COMPLEX NUMBERS. To define subtraction for arbitrary natural numbers, one
has to include negative numbers. To make division possible for any two nonzero integers,
rational numbers are introduced. In order to take limits, one has to include also irrational
numbers leading to real numbers. In order that any polynomial has roots, we used complex
numbers. Does one have to go further? Can one? Does one want to? Yes, there are extensions
to the complex numbers but things become somehow more unpleasant. The only extensions
possible are the quaternions and the octonions. But there is a prize to be payed: the
multiplication of quaternions is no more commutative, the multiplication of octonions is even
no more associative: a(bc) 6= a(bc) in general.

N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H ⊂ O

The discovery of quaternions is attributed to William Rowan
Hamilton. Conway and Guy write in their book: ’Every morning,
on coming down to breakfast, his young son would ask him, ”Well,
Papa, can you multiply triplets?” but for a long time he was forced
to reply with a sad shake of his head, ”No, I can only add and
subtract them”.’ When Hamilton finally succeeded, he cut with
a knife on a stone of Brougham bridge the fundamental formula
with the symbols

i, j, k : i2 = j2 = k2 = ijk = −1.

The natural numbers are the most complex numbers.
The complex numbers are the most natural numbers.

THE FUNDAMENTAL THEOREM OF ALGEBRA.

A polynomial of of degree n has exactly n roots in the complex.

Remark. Gauss was the first to give a proof in his theses. At first, before writing his dissertation,
Gauss still believed that there would be a hierarchy of complex numbers. He thought that
whenever a polynomial can not be factored, one would have to extend the number system.

GAUSSIAN INTEGERS. Complex numbers z = a + ib with
integer a, b are called Gaussian integers. In the same way as
usual integers can be decomposed into primes, one can also
decompose Gaussin integers into Gaussian primes. While some
regular primes are prime also as Gaussian primes like 3, there
are regular primes like 5 which are no more prime as Gaussian
primes: we have a factorization 5 = (1 + 2i)(1 − 2i). To the right
we colored each complex integer according to the number of factors.

Below are the Gaussian primes displayed in the complex plane. Mathematica has already built
in the feature to check for Gaussian Primes like

PrimeQ[2 + I, GaussianIntegers− > True].

Factorization can be done with

FactorInteger[n, GaussianIntegers− > True].

Gaussian integers are factored in a similar way then usual integers. The baby algorithm
just tries division with integers of smaller modulus. If z = z1z2 is a factorization, then
|z|2 = |z1|2 + |z2|2 so that x2 + y2 = (x2

1 + y2
1)(x

2
2 + y2)

2.

MANDELBROT SET The quadratic map

fc : z 7→ z2 + c

with a complex parameter c can be iterated: the game is to
start with a complex number z like 0 and applying the rule fc

on it. Let c = 1 for example. We get a sequence of complex
numbers 0 → i → i2 + i = i − 1 → (i − 1)2 + i → .... In
the parameter space C there is a Mandelbrot set M , which
is defined to be the set of parameters for which the orbit
0 → c → c2 + c... stays bounded. You see for example that
the point z = 2 is not in M since the sequence of numbers
fc(z) = 6, fc(z) = 42 escapes to infinity. The parameter point
c = 0 however is a point in M .

COMPUTING THE MANDELBROT SET
The Mandelbrot set is a set in the parameter domain. In order to see, who we color a point
c in the complex plane. We iterate Tc starting at z = 0 and look how long it takes to have a
modulus larger than some value like 2. If we are close to the set, it will take long to get there,
if we are inside the Mandelbrot set, we will never get there.

M = Compile[{x, y}, Module[{z = x + Iy, k = 0}, While[Abs[z] < 2.&&k < 50, z = z2 + x + Iy; + + k]; k]];

DensityPlot[50 − M[x, y], {x, −2.2, 1.}, {y,−1.6, 1.6}, PlotPoints− > 500, Mesh− > False]



MANDELBAR SET. The same construction can be done by
replacing the quadratic map with the conjugate quadratic
map

fc : z 7→ z2 + c .

The corresponding set is called the Mandelbar set.
People are interested in this set because its topological prop-
erties are different from the one believed to be true for the
Mandelbrot set. This is out of the scope but the last big open problem in complex

dynamics: one believes that the Mandelbrot set is locally connected meaning that every neighbor-

hood of a point contains a connected open neighborhood. The mandelbar set does not have this

property. There are points, where the set resembles the graph of the function f(x) = sin(1/x)

which is not locally connected at (0, 0).

JULIA AND FATOU SETS. The map fc

leaves a set Jc ⊂ C called Julia set and its
complement Fc the Fatou set invariant.
The Julia set is in general a fractal and

at in a complicated way mixed with the
Fatou set. It is ironic that Gaston Julia
(1893-1978) and Pierre Fatou (1879-1929)
were not very well spoken on each other.
They competed both for the 1918 ’grand
priz’ of the academie of sciences and pro-
duced similar results leading to a prior-
ity dispute. Julia was wounded in world
war I. He lost his nose and had to wear a
leather strap across his face for the rest of
his life. He carried on his mathematical
researches in hospital.

EXAMPLES OF JULIA SETS.

”The dragon” c=0.36+0.1 i ”The cauliflower” c=0.25
”The Douady rabbit”
c=-0.121 + 0.739 i

Julia sets are in general fractals meaning that their dimension is between 1 and 2. By the way,
one knows that the boundary of the Mandelbrot set has dimension 2. It is a very complicated

COMPUTING JULIA SETS. Pictures of Julia sets Jc to a parameter c can be computed in a
similar way as the Mandelbrot set. Start with a point z and iterate it and look how long it
takes to get outside a certain disk. Points on the Julia set will never escape and if one is close
to the set, the escape time will be long. The next two lines generate the Douady Rabbit in
Mathematica.

J = Compile[{x,y, u, v}, Module[{z = u + Iv, k = 0}, While[Abs[z] < 200.&&k < 50, z = z2 + x + Iy; + + k]; k]];

DensityPlot[50 − J[−0.121, 0.739, u, v], {u,−1.3, 1.3}, {v,−1.3, 1.3}, PlotPoints− > 500, Mesh− > False];

COMPLEX NUMBERS IN REAL LIFE. Where will you encounter complex numbers most
likely?

• If you take a linear algebra course, you will also be exposed to Fourier theory. It turns
out that Fourier theory is much more elegant in the complex setup. A function f(x) can
be written as a sum f(x) =

∑

n aneπnx called Fourier series.

• In linear algebra, eigenvalues can become complex even for real matrices A. For exam-
ple, a rotation by an angle α in the plane has the eigenvalues eiα and e−iα.

• If you study differential equations, stability issues are related to complex numbers.
For example, for the differential equation y′′(x) = −ay(x) the numbers λ = ±

√
−a are

relevant.

• In statistics the tool of characteristic functions is used. If X is a random variable, then
χX(t) = E[eitX ] is called the characteristic function of X, where E[f(x)] is the expectation
of the random variable f(X). One of the main handy things about this functions is that
if X, Y are independent, then χX+Y (t) = χX(t)χY (t).

• If you use a computer algebra system and you ask to find all the roots of a polynomial,
then the software will give you back the real as well as the non real solutions. Due to
rounding errors, it can happen that you obtain non-real solutions even if the solutions
are real.

A JOKE ON COMPLEX NUMBERS.

Question: Do you know what is a complex number?
Answer: When both the woman and the man shout
”i”.

This is a safe joke to tell. The audience which should be excluded from it, is filtered out
automatically because the joke will sail over their heads, mostly due to lack of mathematical
experience. I feel also perfectly safe to include this a bit more risky part into this handout,
because nobody will ever come so far with reading it.



PHILOSOPHY OF COMPLEX NUMBERS.
If you wonder about the ontological undecidability of non-existing objects in the real of the
”possibility” in contrast to ”actuality”, then you will have to consider the Kantian view of
phenomenal objects as the result of interaction between external and internal or to postulate
the metaphysics for non-existent objects as a complete equality between subject and object.

Everything clear? The above statement illustrates a difference between Mathematicians and
Philosophers: while Mathematicians only need paper, pen and a waste basket to work, Philoso-
phers can even do with paper and pen alone ...

LITERATURE.

• Currently the best historically introduction to complex numbers is the book by Paul
Nahin: ”An imaginary tale: the story of

√
−1”. The Hadamard citation at the beginning

of this handout is taken from there.

• The marvelous booklet of Conway and Guy ”The book of Numbers” contains an intro-
duction to complex numbers and Gaussian primes. The style of this book is hard to beat:
densely packed with information, no unnecessary talk, but still readable like a novel. Its
probably the most beautiful book on numbers.

• A nice introduction to Gaussian integers is in Appendix I of the gem ”The geometry of
numbers” by C.D. Olds, Anneli Lax and Giuliana Davidoff.

• The bestseller ”Gamma: Exploring Euler’s constant” has also a introduction into complex
analysis and provides also some good history background on (complex) logarithms.

• We cited from the book ”Mathematics and the Imagination” of Kasner and Newman,
which is available in the ’budget friendly’ but nevertheless excellent Dover series.

• Most calculus textbooks contain some introduction to complex numbers. Complex loga-
rithms are often neglected in calculus textbooks.

• As a survival or refresher guide, SparkNote on Complex Numbers, by Kenny Shirley
(http://www.sparknotes.com/math/precalc/complexnumbers) come handy.

• An inspiring book in the spirit of experimental mathematics is ”Computational Number
theory” by David Bressoud and Stan Wagon, where in some chapter the reader is also
invited to do some experiments with Gaussian integers.

• There are many online resources on complex numbers. The photo illustrations of some
Mathematicians displayed in this handout were taken from the ”Mac Tutor History of
Mathematics Archive” at the School of Mathematics and Statistics at the University of
St Andrews. Also the citation of Gauss of 1825, that the ”true metaphysics of the square
root of -1 is elusive” is from that article.

• One picture of Benjamin Peirce was taken from: Julian Lowell Coolidge, ”The Develop-
ment of Harvard University, 1869-1929, Since the inauguration of President Eliot, 1869-
1929 Chapter XV. Mathematics, 1870-1929”.

• The book ”The golden Ratio, the Story of Phi, the Word’s Most Astonishing Number”
by Mario Livio is a good source on the golden number. A personal side remark: Livio, a
leading astronomer, was the PhD advisor of my wife.

• The topic of complex iteration has been treated extensively in the literature for a general
audience. There are dozens of entertaining books on the subject. The book of James
Gleick, ”Chaos” made it into a natural bestseller. The book ”The Beauty of Fractals” of
H-O. Peitgen and P.H Richter of 1986 still contains some of the most beautiful pictures
of the Mandelbrot set. The pictures here were produced either with Mathematica or the
software ”xfractint” from the ”stone soupe group”.

• An affordable and rather mathematical booklet has been authored by by Lennart Carleson
and Theodore W. Gamelin. Its title is ”Complex Dynamics”.



PROBLEMS.

1) What is (1 + 3i)/(4 + i)?
2) What is i100002?
3) Find all the roots of x2 + 3x + 3.
4) Find all the solutions of x2 + 9 = 0.
5) Verify that sin(ix) = i sinh(x), where sinh(x) = (ex − e−x)/2.
6) Find all the third roots of 3 + 4i.
7) Find log(1 +

√
3i).

8) Derive 2 sin(x) cos(x) = sin(2x), cos2(x) − sin2(x) = cos(2x) from de Moivre.
9) You iterate the map f(z) = z2 + i. What is f(f(f(f(z))) for z = 1?
10) Find the prime factorization of the Gaussian integer z = 5 + 7I.

APPENDIX: COMPLEX NUMBERS AND GRAPHICS CALCULATORS.

Pocket Calculators: While smaller pocket cal-
culators like the TI-30 give an error message when
trying to compute

√
−1, more advanced calcula-

tors like the TI-89 know the arithmetic of complex
numbers. The symbol i is accessible as

< 2nd >< catalog >

(you see the i symbol above the < catalog >
key). Note that graphics calculators should
be considered rather a toy. They are not very
appropriate on the college level. The graphic
abilities of calculators like TI-89 Titanium are
very limited. There are many reasons to learn a
real computer algebra system (CAS).

Advantages of graphics calculators: always
on and ready, cheap (50-150 dollars). Often
familiar to students from high school.

Disadvantages of graphics calculators: small
memory, poor graphics, complicated interface, dif-
ficult to connect with other programs or other com-
puters. Soon obsolete.

APPENDIX: COMPLEX NUMBERS AND COMPUTER ALGEBRA SYSTEMS.
Computer algebra systems: Mathematica and Maple are examples of computer algebra
systems (CAS).

Mathematica:

• Solve[x3 + 5x + 10 == 0, x]

• (2 + 3 ∗ I)/(3 + 7 ∗ I)

• Log[I]

• Sqrt[−2]

• Exp[Pi ∗ I]

• Conjugate[1 + I]

Maple:

• solve(x3 + 5x + 10 = 0);

• (2 + 3 ∗ I)/(3 + 7 ∗ I);

• log(I);

• sqrt(−1);

• exp(Pi ∗ I);

• conjugate(1 + I);

(Note that maple needs a semicolon after each command, a semicolon is also possible in Mathematica,

but then Mathematica does not display the result) Using a different CAS is like driving an other
car, a rough translation of Mathematica to maple for example is to replace uppercase to lower
case, square brackets with round brackets and adding a semicolon at the end.

APPENDIX: SOLUTIONS TO PROBLEMS.

1) (1 + 3i)/(4 + i) = (1 + 3i)(4 − i)/
√

17 = (7 + 11i)/
√

17
2) Note that i4 = 1 so that i1000 = 1 too and the answer is −1.
3) (−3 ± i

√
3)/2.

4)
√
−9 = 3

√
−1 = ±3i.

5) sin(ix) = (eiix − e−iix)/i = i(ei − e−x)/2 = i sinh(x).
6) 3 + 4i = 5ei0 so that (3 + 4i)(1/3) = 51/3e2πki/3,k = 0, 1, 2.
7) z = 1 +

√
3i = 2eiπ/3 so that log(z) = log(2) + iπ/3.

8) 2 sin(x) cos(x) = sin(2x) = Im(e2ix), cos2(x) − sin2(x) = Re(ei2ix) = Re(eix)2 cos(2x).
9) 80 − 17i.
10) 25 + 49 = 74 = 2 · 37. We have to look for Gaussian integers p, q with |p|2 = 2 and
|q|2 = 37. Indeed (1 + i)(6 + i) is the factorization.
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must admit - that he can not yodel.

Even after 11 years of teaching and doing research at various US institutions like Caltech, the
University of Arizona and the University of Texas and now at Harvard, he still preserved a
lovely Swiss accent. Knill is interested in any aspects of math but especially in the ”dynamics
stuff”.

Knill loves a lot to run along the Charles river or get lost in the suburbs and freeways near
Boston with his roller-blades. Quote of Knill: inline skating feels a lot like skiing.
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