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Introduction

Niklas Schörnig and Thomas Reinhold

Abstract In 1987, Allan Din published the seminal book “Arms and Artificial
Intelligence,” in which he argued that the future military use of AI would be a
double-edged sword. Warning about control failures and accidental war on one
hand, Din also pointed out the potential of AI to enhance arms control. 35 years
later, what was a niche technology in Din’s day has since become one of the most
influential technologies in both the civilian and military sectors. In addition, AI has
evolved from sophisticated yet deterministic expert systems to machine learning
algorithms. Today, AI is about to be introduced in almost every branch of the
military, with a variety of implications for arms control. This book reflects the
work of the individual authors and identifies common themes and areas where AI
can be used for the greater good or where its use calls for particular vigilance. It
offers an essential primer for interested readers, while also encouraging experts from
the arms control community to dig more deeply into the issues.

1 The Use of AI as a Revolution in Military Affairs

“The envisaged uses of computer and IT techniques in weapon systems give rise to
both skepticism and concern, for example because of the risk of control failures
leading to crisis and accidental war. There are, however, also possible applications of
these techniques within arms control which may have a more positive connotation”
(Din, 1987, p. 8). When Allan Din wrote these words in his seminal edited volume
“Arms and Artificial Intelligence” in 1987 they almost sounded like science fiction.
However, when Din and his co-authors talked about AI they had an understanding of
it that is completely different how it is perceived today. In the 1980s, AI often boiled

N. Schörnig (*)
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T. Reinhold
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down to so-called expert systems, that is, highly complex, deterministic systems
supporting decision-making “based on the heuristic knowledge of domain experts in
combination with decision rules” (Orhaug, 1987, p. 167), or problem solving by
brute force, a rather simple trial-and-error approach limited by processing power.

2 N. Schörnig and T. Reinhold

Today, things look rather different: Not only has the processing power of CPUs
increased by a factor of 10001—following Moore’s Law until very recently—new
AI techniques such as machine learning have revolutionized the potential of AI
applications. When Stanley, the autonomous Volkswagen Touareg, won the
DARPA Grand Challenge in 2005 it was the first of five cars to cover the 213 km
distance without an accident—in the open desert, without any other traffic. Even
17 years later, fully self-driving cars are still not on the market, but the assistance
systems are still aiming at making the driver in the cockpit almost superfluous and
already work quite well in well manageable situations.

Some experts claim, and rightly so, that development will continue at a rapid
pace, especially as AI is, as Paul Scharre puts it, “not a discrete technology like a
fighter jet or locomotive, but rather is a general-purpose enabling technology, like
electricity, computers, or the internal combustion engine” (Scharre, 2019). Since
civilian advances in AI have a high dual-use character, they have also advanced the
military use of AI to a massive degree. Other experts are less optimistic and warn that
AI is still best applied to very specific tasks and that the vision of a more universal,
flexible and adaptable AI might turn out to be a dead end.

But so far AI seems to provide the technology for enhancing solutions for
technical challenges and the latest technical advancements in computer processing
power and size described above now allow powerful devices that can handle the
processing of AI algorithms, making it increasingly clear that AI will permeate and
transform all military domains, from reconnaissance and analysis to key decision-
making processes on both the tactical as well as the strategic level, and, finally, the
direct execution of a military strike or attack. There are numerous examples, mostly
from the US military, that is (still) at the forefront of implementing AI in the military:
The US Navy, for example, is “looking to leverage advanced technological capabil-
ities in artificial intelligence (AI) and machine learning (ML) in the tactical and
operational realm” (Munoz, 2022, p. 8). In the future, a new Joint-All-Domain
Command-and-Control-Concept (JADC2) is expected to combine data from a mul-
titude of sensors and apply AI-enhanced evaluation to the data in order to identify
targets and recommend the optimal weapon (White, 2021, p. 21).

While military AI still consists of isolated islands in many places, no-one would
doubt that it will have an even stronger impact in the years to come, when the
so-called “Internet of Military Things” will “change the landscape of defense
operations,” as the trade magazine Jane’s Defence Weekly predicts (Torruella,
2021, p. 3).

1In 1985, Intel’s new 80,386 CPU combined 275,000 transistors on one chip, while the current
generation of microprocessors squeeze over 3 billion transistors into a very small space. However,
the number of transistors is of course not the only factor determining a CPU’s performance.
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In any case the steady rise in the use of military AI is leading to an ever-increasing
acceleration of decision processes and cycles. It is no wonder that many experts,
some of whom are also represented in this volume, have argued for some time that
the introduction of AI will primarily lead to an acceleration of military actions and
responses, shorter reaction times and higher alert levels. This assessment is also
shared by the military. The German armed forces, for example, expect a “battle at
machine speed” in the future, with decisions to be made in minutes or even seconds,
rather than hours (Doll & Schiller, 2019, p. 4).

Thus, while military commanders recognize a tremendous advantage when
they—and only they—have a significant advantage in the use of AI, arms controllers
and other critics primarily see the dangers of an unhindered and unrestricted military
“AI race.”

2 The Purpose of the Book

However, such observations are neither new nor innovative, and debating only the
military impact of AI on war in general would probably not warrant another book.
Our book seeks to go a step further and look at the military use of AI from the
perspective of arms control and verification. While we describe the idea behind arms
control and verification in more detail later in the book, it is fair to say that all serious
arms control needs verification to ensure compliance and be effective. Unfortu-
nately, when it comes to arms control, AI causes potential problems unseen in the
older days of physical weapon systems. Not only is arms control hindered by the fact
that in contrast to hardware such as tanks, planes, or missiles, which can be
physically inspected and counted, software code is notoriously hard to control and
verify—if ever. Given the large capacity of modern memory hardware, even
extremely complex programs can be stored on fingernail-size memory cards. Soft-
ware can be updated or replaced in an instant—even if a specific military system
passes an inspection, the chance is high that a software update will increase its
performance and the dangers it poses tremendously. Consequently, AI will have a
very sizable impact on arms control—for better or worse. Unfortunately, many arms
control experts who are very familiar with the particular weapon category they work
on, still shy away from dealing with AI as they fear that their knowledge in computer
science is not sufficient. Our book thus aims at broadening understanding of the
relevance of software, AI and ML in the military and arms control realm and seeks to
encourage experts to look more deeply into the advantages and disadvantages of AI
in their field. The book offers background knowledge about what AI and ML are,
how they work, and what they can and cannot achieve, and provides both broader
perspectives on the way AI will transform the military as well as insights into key
players. It also offers an overview of the relevance of software, AI and ML within
several weapon fields in the realm of nuclear, biological and chemical (NBC)
weapons, conventional weapons and emerging technologies and examines how the
respective fields are dealing with the increasing relevance of new AI-technologies.



For those who are more strongly focused on AI, the book introduces relevant
theoretical concepts of arms control and verification, and the way different AI
developments will impact arms control. While almost all chapters could easily be
twice as long as they are now, all authors were asked to be brief, crisp, and
understandable. Consequently, the chapters are not only usable for gaining knowl-
edge but are also very suitable for classroom teaching.

4 N. Schörnig and T. Reinhold

3 The Structure of the Book

After this introduction, the book is divided into three sections. The first section
contains theoretical reflections and looks at key actors in the field. The sections starts
with a text by Peter Buxmann and Melanie Reuter-Oppermann. They provide an
informed introduction to the topic of artificial intelligence and machine learning.
Without drifting into formal or mathematical argumentation (which has been placed
in the appendix), they first provide a short historical overview of artificial intelli-
gence and machine learning followed by a more concrete introduction to different
forms of machine learning algorithms and methods for measuring algorithm quality.
This chapter is unrelated to the topics of armament and arms control and can be used
as a general introduction to AI. Chapter three, written by Frank Sauer, describes the
military rationale for the use of AI. Sauer starts with an understanding of AI
encompassing automated tasks “which previously required the application of
human intelligence” (p. 27). While this understanding is rather broad, it is also
common within military circles. Sauer concludes that in the debate on the military
use of AI and ML both are “simultaneously over- and underestimated” (p. 27),
blurring clear-cut discourse on opportunities and threats. Frank also sees signs of a
dynamic that is detached from actual military needs, arguing that many military
officials are employing AI in the armed forces “because everyone else is doing it” (p.
28) and pointing to the pressure many militaries see themselves under. But he also
concludes that AI has much to offer the military, at least at first sight and from a
strictly military point of view where AI allows faster targeting cycles which even-
tually lead to superiority over the opponent. He concludes that “the hype is real” but
cautions that “so are the risks” (p. 28), and argues that the widespread misunder-
standing of AI’s strengths and weaknesses is in large part responsible for making the
introduction of AI in military applications fraught with risk due the hype surround-
ing it (p. 35).

Chapter four, written by Sophie-Charlotte Fischer, looks more closely at issues
from the end of Sauer’s more general chapter and introduces the key players
regarded as responsible for the AI arms race. Fischer argues “that important clues
to inform the nascent academic and policy discourse on the military and broader
security effects of AI can be derived from analyzing and comparing how different
countries pursue military AI—in what kind of applications they invest and in which
selected areas they already deploy AI” (p. 40). After developing a framework for
analysis, Fischer assesses the military capabilities of four countries, the United



States, China, France, and Israel. She concludes that all four countries view syner-
gies between the commercial and military sector as critical to realizing their AI
objectives and are in the process of implementing AI “across a wide range of areas
including logistics and training, cyber and information operations, Intelligence,
Surveillance and Reconnaissance (ISR), and (semi-)autonomous vehicles as well
as command and control” (p. 52). However, each country differ significantly in their
approach to the risks associated with the application of AI in the military.

Introduction 5

In the fifth chapter, Niklas Schörnig looks at the brighter side of the use of AI in a
military context and examines how AI can be used to foster arms control. After a
general overview presenting the theoretical background of arms control, disarma-
ment and non-proliferation from the specific perspective of verification, Schörnig
systematizes the use of AI for arms control in several broader categories, including
the use of AI for translation and analysis of text in arms control and verification
contexts, the analysis of graphical data, other sensory data, and multimodal data. He
concludes that while AI will not replace inspectors in the foreseeable future, it
nevertheless offers very helpful support that facilitates the work of inspectors and
should be used more in the future.

The second major section of the book, “Empirical Examples from Different
Fields of Arms Control,” starts with chapter six written by Alex Kelle and Jonathan
E. Forman, both of whom have a background as former employees of the Organi-
zation for the Prohibition of Chemical Weapons (OPCW). They address the issue of
“Verifying the Prohibition of Chemical Weapons in a DigitalizedWorld.” In order to
understand how new technologies including AI fit into the elaborate verification
mechanism of the OPCW, the text first offers a basic understanding of the different
verification rules and procedures implemented by the OPCW. They also show that
the use of state-of-the-art science and technology for verification purposes flows
directly from the Chemical Weapons Convention itself. While AI can enhance
verification, the authors also draw attention to the profound changes through
which the chemical industry has gone in recent years due the adoption of AI as
part of the so-called Industry 4.0. They conclude that this is no time to be afraid of
the rapid changes in science and technology, but that scientific literacy is the key to
keeping track of both beneficial and malicious use.

In chapter seven Filippa Lentzos looks at AI and biological weapons and high-
lights key impacts of machine learning and automation on biological research,
medicine and healthcare. Lentzos argues that these developments could make the
production of biological weapons easier and proliferation more likely. She continues
that even though biological weapons are completely prohibited by the Biological
Weapons Convention, artificial intelligence and other converging technologies are
radically transforming the dual-use nature of biology and present significant chal-
lenges for the treaty. She discusses these challenges and presents a vision of how
biological arms control can evolve in order to remain relevant in the Fourth Indus-
trial Revolution.

Chapter eight, written by Jana Baldus, is the first of two chapters to look at AI and
nuclear weapons. Baldus looks, first, at the connection between AI, nuclear weapons
and autonomy and points out that during the Cold War earlier forms of AI were quite



common in the nuclear domain. She argues that the use of AI and ML could lead to
more reliable early warning and nuclear command systems, generally enhancing
nuclear stability. She also points to the downsides, however, including, among
others, biased datasets or even increased skepticism toward a high degree of
technologization due to the excessive destructiveness of nuclear weapons. She also
points out how “AI could help improve the cross-analysis of ISR data, for example to
help control treaty declarations” or support the efforts against nuclear proliferation.
Like others in this book, Baldus argues that experts in the weapon systems under
consideration need to gain an even better understanding of what AI already exists
and where and keep track of how these developments will impact nuclear strategy.
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The next text, chapter nine, by Anna Heise, delves into an aspect Jana Baldus
only touched on: The use of AI in nuclear testing, that is the simulation of nuclear
explosions on powerful computer systems. Based on the little that is publicly known
about the subject, Heise describes how AI has improved virtual testing and thus
avoiding “live” tests with actual nuclear weapons. Heise stresses the human factor
and argues that the results of tests “are only as good as the data and models you give
them and the knowledge and experience of the person doing the calculations” (???).
On this basis she concludes that the future use of AI in testing will “not only be
dependent on the technology but on the emotional attitude of those in charge” (???).
Heise than looks into the processes of detecting nuclear tests as it has been carried
out by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) since its
foundation in 1996. She explains, for example, how AI can be used to detect tests
with seismic wave-form analysis or how AI can help estimate yields of nuclear
explosions. Finally, Heise looks at the dangers, emphasized by some observers, such
as the analysis of explosions potentially generating proliferation-relevant informa-
tion on, for example, the design of warheads. She finally concludes that there is
already relevant technology for both virtual testing and detection of real nuclear
tests, but that these technologies are only being implemented tentatively. Obviously,
there is still a lack of trust when it comes to the use of AI in such security-relevant
contexts.

With chapter ten, written by Benjamin Schaller, the focus shifts from weapons of
mass destruction to conventional aspects of arms control. Based on well-known
theories of international relations, Schaller presents the need for conventional arms
control and starts with a short overview of European conventional arms control. The
European focus may surprise the casual reader, but in fact Europe is the only region
in the world where, at least until recently, there was a comprehensive and established
arms control architecture in place. Schaller first discusses whether the balance of
power will be altered by the use of military AI. He argues that AI will make it even
harder to come up with a “balance of power” as quantitative factors become less
relevant in contrast to qualitative factors, which are harder to establish. Schaller also
argues that at least within the OSCE, the Organization for Security and Cooperation
in Europe, AI has played only a minor role, arguing that current differences have
caused too many problems for the implementation of AI in fostering arms control to
be considered. But he sees chances of fostering conventional arms control, for
example by analyzing military information that has been exchanged in the context



of confidence and security building measures, but also by enhancing more concrete
verification measures. Schaller concludes by emphasizing what other authors have
previously stressed: the importance of maintaining the “human factor” in arms
control.
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Leaving physical weapons altogether, chapter eleven, written by Thomas
Reinhold and Christian Reuter, focuses on “cyber weapons and AI.” After an
insightful introduction to the militarization of cyberspace, Reuter and Reinhold
examine how the development of future cyber weapons will be influenced and
driven by AI and ML. The authors argue that cyber and AI/ML are closely related
and that all positive effects of AI and ML on developing software when transferred
to the cyber sphere as well as current software architecture of course provides an
ideal platform for having AI/ML components added to them. They argue that the
problems normally associated with AI, namely the loss of human control due to ever-
shorter reaction times, are particularly relevant in the cyber domain, “an environment
that is marked by extremely low response times.” Reuter and Reinhold also draw
attention to the fact that the black-box character of AI and ML systems could lead to
new problems regarding attribution of attacks. But they also see a bright side, for
example a time when AI-enhanced algorithms will be able to find slightly altered
code instead of looking for exact matches or reveal hackers by identifying their
particular “digital fingerprint.”

Many of the previous texts have described lethal autonomous weapons as a prime
example of the future use of military AI. In chapter twelve, Anja Dahlmann finally
looks at the two most prominent “emerging military technologies,” drones and lethal
autonomous weapon systems (LAWS). Dahlmann describes remotely piloted mili-
tary drones as a step toward autonomy. From a military perspective, future drone
systems will probably involve more new functions be carried out autonomously,
such as air-to-air combat or manned-unmanned teaming. More autonomy will also
offset current shortcomings, such as latency problems or broken or jammed com-
munication links. Dahlmann raises the point that all these autonomous functions will
most probably be based on AI and ML, drawing a direct line between current drones
and future LAWS. Dahlman continues to argue that this development will necessi-
tate a new perspective on arms control, with a focus on the element of human
control. In that context, Dahlmann also reminds us that many of the components
of LAWS will be dual-use. She concludes that, due to the lack of concrete regulation
of LAWS, it is only hypothetical whether AI could have a positive impact on arms
control for LAWS—and whether only LAWS should be equipped with “some sort of
ethical behavior” (???).

The third and last section of this book focuses on the question of “what should be
done.” In chapter thirteen, Maaike Verbruggen focuses on the technical aspects of
making ML-based AI reliable. Using the term “verification” in the strict technical
sense of software engineering rather than in the sense of arms control, Verbruggen
shows the great difficulties when applying time-proven concepts of engineering to
software in general and self-learning software in particular. These problems are
compounded by the fact that AI is often integrated modularly, leaving open ques-
tions of how the AI and the rest of the software interact. She proposes that integration



of verification and validation measures should be structurally integrated into the
design process of AI-based software from the very start, arguing for a “correct by
construction” approach. While on the one hand Verbruggen stresses that these
problems are already being examined by defense ministries around the world, she
also fears that establishing international validation and verification standards will
become a very difficult task.
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In chapter fourteen, Kolja Brockmann discusses how current export control
regimes are already applicable to AI and ML algorithms and how they should be
improved to restrict the proliferation of malicious AI applications. Brockmann starts
from the assumption that there is “lack of clarity about the extent to which export
control instruments already cover dual-use goods and technologies used in AI and its
military applications” (???). While examining existing export control regimes for
dual-use goods, such as the Wassenaar Arrangement, in detail, Brockmann identifies
both controls relevant to hardware (e.g., CPUs specifically designed for AI) as well
as software, or even “technologies,” understood as specific information necessary for
the development of AI tools. He then describes current review processes by, for
example, the United States or the European Union and how these processes deal with
emerging technologies. Going beyond existing regimes, Brockmann finally looks at
challenges and opportunities in applying export controls to AI, weighing up the
conflicting aims of export control and describing opportunities and benefits. He
concludes that coordination and exchange between the major stakeholders will be
the key to finding the right balance in the control of AI exports.

In the final chapter, chapter fifteen, Thomas Reinhold looks at a topic most people
would consider a non-starter: the application of hard arms control measures to
artificial intelligence and machine learning. While many observers would argue
that conventional arms control instruments, such as verification and inspections,
cannot be applied to software at all and that only weaker normative restrictions have
a chance of being applied, Reinhold looks at best practices from the cyber realm as a
source of innovative ideas. To achieve this he disaggregates the process of building
an AI application into several independent elements, including training data, classi-
fiers, the AI model and the effectors where the AI is finally applied, and discusses
how specifically tailored arms control instruments could be applied separately.
Reinhold himself points out that these considerations are currently only theoretical
and that significantly more work is required in order to arrive at initial proofs of
concept. Viewed optimistically, however, the chapter shows that the statement that
hard arms control cannot be transferred to “soft” software needs to be reconsidered.

4 Conclusion

Looking at all fifteen chapters, several general conclusions can be drawn. As was to
be expected, AI has an impact on almost all types of weapons. Even if individual
weapons are not always optimized by AI, “mosaic warfare” (Torruella, 2021), that is,
the enormous relevance of data and information exchange and analysis, has already



arrived in many areas of the military. In more and more instances, humans are
supported and assisted by AI, leaving the human as the slowest link in military
decision-making. Developments are often driven by the AI race in the civilian sector.
The states with a dynamic civilian technological AI base are also the states that want
to reap the benefits for the military. Almost all authors fear that the use of military AI
will lead to an increased speed of military operations and the need to act faster in
times of crisis, leading to instability and hair-trigger alerts. The general
unpredictability of current black-box AI algorithms must also be added to this,
potentially worsening situations where human soldiers have to trust their computer.
Thus, both finding ways to increase the reliability of AI as well as forms of control
for AI are the imperatives of future research. But there are also positive develop-
ments: In many contexts, projects are exploring how AI can be used to enhance arms
control in general and verification in particular. International institutions such as the
IAEA are looking very closely at how they can harness AI for their own purposes
(IAEA, 2020). While arms control is in its most severe crisis since its introduction in
the 1960s, reliable AI might be a key to restarting arms control in a new and reliable
fashion. However, there is also agreement that verification should not be outsourced
to computers completely, but that AI should primarily aim at supporting human
inspectors rather than replacing them.

Introduction 9

Finally, we hope that this book will encourage experts from the arms control
community who until now have shied away from the topic of artificial intelligence in
their respective fields to dig more deeply into the issues. What is needed is genuine
interdisciplinarity, something which is far too rarely seen. We hope that our book
shows that interaction between the two professions is needed and possible.
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Introduction into Artificial Intelligence
and Machine Learning

Melanie Reuter-Oppermann and Peter Buxmann

Abstract Artificial intelligence (AI) has become an important topic in research as
well as industry since its birth in the 1950s. Research on early approaches of
machine learning has actually been going on since the 1940s. Still, the question
often arises what is actually meant by AI, especially in practice. In this chapter, we
give a brief introduction into artificial intelligence and more specifically machine
learning (ML). We briefly summarise the history of artificial intelligence and
machine learning, introduce the concepts of supervised learning, unsupervised
learning, and reinforcement learning as the tree main types of ML algorithms and
discuss how to measure the quality of machine learning algorithms. For the inter-
ested reader, the appendix of the chapter includes a brief description of artificial
neural networks and machine learning metrics.

1 Introduction

Artificial intelligence (AI) has become an important topic in research as well as
industry. As stated in the Artificial Intelligence Index Report 2019, the number of
peer reviewed publications on AI increased by more than 300% between 1998 and
2018 (Perrault et al., 2019). In the same report, large companies were surveyed out of
which 58% stated that they were using AI in at least one function or business unit in
2019 (Perrault et al., 2019).

Especially in practice, the question often arises what is actually meant by AI. This
question is not so easy to answer, because there are many definitions. Finding a
uniform definition is difficult for two reasons: firstly, because of the breadth of the
field, and secondly, because even a definition of intelligence proves difficult. There
is general agreement that AI is a sub-area of computer science that deals with the
research and development of so-called “intelligent agents” (Franklin & Graesser,
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1997). This is characterized by their ability to solve problems independently, without
human interaction (Carbonell et al., 1983). Examples for AI include reasoning,
knowledge representation, planning, learning, natural language processing, percep-
tion, and the ability to move and manipulate objects.
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It is important to differentiate between strong and weak AI: strong AI is generally
understood to include all approaches that attempt to depict and imitate humans or the
processes in the brain. Properties such as consciousness or empathy are also fre-
quently mentioned as constitutive characteristics of such a strong AI (Pennachin &
Goertzel, 2007; Searle, 1980). However, research is still far from this point and we
are not aware of any research projects that have come close to implementing strong
AI. In contrast, solutions that are now technically feasible and have been
implemented in current software solutions can be classified as weak AI (or narrow
AI). Weak AI aims at developing algorithms specifically for certain, delimited
problems (Goertzel, 2010; Pennachin & Goertzel, 2007).

An essential requirement not only for strong, but also for many weak AI, is the
ability to improve their performance over time (Faraj et al., 2018), as a process of
optimization on the basis of experience and the adaptation to possibly changing
environmental conditions. In recent years, AI has developed more strongly in the
direction of machine learning (ML). According to Brynjolfsson and McAfee (2017)
of MIT, this is the most important basic technology of our age.

Research on early approaches of ML has actually been going on since the 1940s.
Nevertheless, many technologies only become established when the framework
conditions are right—as it is currently the case with AI applications. In recent
years, the general conditions for the application of ML approaches have improved
dramatically. Some barriers have been removed and new conditions have been
created:

Firstly, digitized data is now available in an unprecedented amount—both on the
Internet and in companies. This data is the basis for the use of ML methods. In
addition, platforms such as Kaggle, a platform for a data science community owned
by Google, exist, which provide tailored data sets for a variety of AI applications.

Secondly, computing power and storage space are more cost-effective than ever
before and can be easily obtained from cloud providers. It is possible that develop-
ments in quantum computing will further help computationally intensive AI appli-
cations to make a breakthrough in the future. However, in addition to the advantages,
it should also be considered that the use of cloud services can become a real cost
factor when dealing with large amounts of data.

Third, the performance of ML algorithms has improved in recent years which
enables them to be used on large scale, complex problems and applications.

Fourthly, there are many toolkits and libraries available free of charge for the
development of AI applications. Examples include Scikit-learn, Apache Spark
MLlib, Keras, CNTK, PyTorch or TensorFlow (Buxmann & Schmidt, 2019).
Most of these tools were published under an open source license and facilitate the
development of ML applications enormously. For example, tools such as Tensorflow
or Scikit-Learn can be used to easily integrate ML methods into software code. In
addition, frameworks like RapidMiner exist which support the entire development



process, including tasks like modeling as well as the processing, cleansing, and
visualization of data. In addition, the possibilities to use ML algorithms have also
been simplified by the fact that providers such as Google, IBM, Microsoft, or SAP
now offer AI services based on a pay-per-use payment model. This means that users
can obtain services such as voice to text conversion or object recognition via a
software-as-a-service model. Business models are thus developing around the use of
ML, which will further promote its use and distribution in the future.
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From a technical perspective, the term machine learning generally encompasses
methods that use learning processes to identify relationships in existing data sets in
order to make predictions based on them (Murphy, 2012). There are many different
concepts of the term. Often the approach of Tom Mitchell is used, who defines the
basic concept of ML as follows: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with experience E.”
(Mitchell, 1997, p. 2). In other words, the ability of a machine or software to learn
certain tasks is based on the fact that it is trained on the basis of experience, i.e. data,
instead of trying to explicate knowledge into hard coded rules and algorithms. What
sounds harmless is a paradigm shift. Let us consider the recognition of cats, dogs or
other animals in pictures as an example. In order to teach the algorithm a distinction,
the developer no longer explicitly states in the software code that a cat has, for
example, four paws, two eyes, sharp claws and fur. Instead, the algorithm is trained
with many different animal photos, which it uses to learn how the respective animals
look and how they differ from other animals. Another example to illustrate the basic
principle are audio systems where an algorithm is trained with audio data containing
a certain word, e.g. destination input for the navigation system in a car. In this way,
the algorithm learns what this word sounds like, even if it is pronounced differently
by different people or if there are different background noises. This is remarkable for
several reasons: We humans often know more than we can express. This makes it
difficult for software developers or analysts to code or specify certain facts. One
speaks of the so-called Polanyi paradox, named after the philosopher Michael
Polanyi: “We know more than we can tell” (Polanyi, 1966). This principle can be
illustrated well when looking at Fig. 1: We can immediately tell that the left image
displays a sheepdog and the right one shows a mop. Explaining why the image falls
into a certain category is not trivial, though. In fact, when asking a popular stock
image database for similar images to the mop, the search results include the
sheepdog image. This lets us assume that an underlying AI considers both images
to be similar. This idea was popularised by Karen Zack on her Twitter account,
where she published several image sets on different themes, e.g. “sheepdog or mop”,
“Chihuahua or muffin” or “puppy or bagel” (Zack, 2016). Many ML based systems
are excellent learners, exceeding the capabilities of humans in many tasks, for
example when diagnosing diseases or detecting fraud (Fawcett & Provorst, 1997;
Litjens et al., 2017).
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Fig. 1 Sheepdog or mop? © Getty Images

2 The History of Artificial Intelligence and Machine
Learning

The Summer Research Project on Artificial Intelligence, which took place at Dart-
mouth College in Hanover, New Hampshire, in 1956, is considered to be the birth of
AI. It was a six-week conference organized by John McCarthy, the inventor of the
programming language LISP. Other prominent participants were the AI researcher
Marvin Minsky (1927–2016), the information theorist Claude Shannon
(1916–2001), the cognitive psychologist Alan Newell (1927–1992) and the later
Nobel Prize winner in economics Herbert Simon (1916–2001). The participants
shared the view that intelligence can also be created outside the human brain.
However, they disagreed on the way to achieve this, and the term artificial intelli-
gence proposed by McCarthy remained controversial then—as it does today
(Manhart, 2017).

Following this conference, AI research received a major boost as computers
became faster and cheaper and the capacity to store data increased. Progress was
also made in the field of Artificial Neural Networks (ANN). Demonstrators, such as
the General Problem Solver developed by Newell and Simon or Joseph
Weizenbaum’s program ELIZA already demonstrated the potential of AI algorithms.

However, these initial successes led to misjudgments and exaggerations. For
example, Marvin Minsky told Life Magazine in 1970 “in 3 to 8 years we will
have a machine with the general intelligence of an average human being”. Herbert
Simon, who predicted in 1957 that within the next 10 years a computer would prove
an important mathematical theorem, was subject to a similarly optimistic misjudg-
ment (Newell & Simon, 1958). As a result, many expectations were not fulfilled at
first, partly due to insufficient computing power. The period from 1965 to about
1975 is therefore often referred to as AI winter (Manhart, 2017).

In the 1980s, the focus was particularly on the development of so-called expert
systems, led by Edward Feigenbaum, a computer science professor at Stanford
University. The principle of expert systems is essentially based on a definition of



rules that explicitly formalize knowledge and the development of a knowledge base
for a thematically clearly defined problem. The MYCIN system, which was used to
support diagnosis and therapy decisions in blood infection diseases and meningitis,
became particularly well known (Shortlife et al., 1975). Intensive research was also
conducted on expert systems for operational applications (Mertens, 1985). Ulti-
mately, however, these systems were not able to prevail, as rules were too rigid
and the systems had a limited learning capacity.
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Also, at the beginning of the 1980s, Japan set a clear signal in the direction of AI
research with the so-called Fifth Generation Project, in which 400 million dollars
were invested. The researchers’ goals were primarily practical applications of
AI. For implementation, they did not favor LISP, which was widely used in the
United States, but tended towards the PROLOG language developed in Europe in the
1970s (Odagiri et al., 1997).

In 1990, Marvin Minsky initiated distributed AI as another new approach. This
formed the basis of the so-called agent technology, which can be used for
simulation-based analysis in various areas of investigation (Chaib-Draa et al.,
1992). Also in the 1990s, great progress was made in the field of robotics. One
competition with high publicity value is the RoboCup, in which scientists and
students from all over the world let their robot teams compete against each other
in soccer (Hess et al., 2014). This phase also saw the development of complex
algorithms in the field of ANN (Nilsson, 2014; Russell & Norvig, 2010).

In 1997, the competition between IBM’s Deep Blue and the then world chess
champion Garry Kasparov caused a great public stir. Deep Blue narrowly won the
duel with a score of 3.5:2.5, which was partly interpreted in the media as a victory of
the computer over humankind. However, critics noted that Deep Blue was not really
an intelligent system. Rather, the system simply used brute force, i.e. it simply
calculated the consequences of all (halfway plausible) moves with high computing
power. In fact, Deep Blue used heuristic algorithms that enable an intelligent search
(Korf, 1997). Korf states that “if any technique deserves to be called AI, this one
does.”

3 Machine Learning Algorithms

When talking about ML algorithms, basically three types can be distinguished
(Marsland, 2014; Murphy, 2012; Russell & Norvig, 2010): (1) supervised learning,
(2) unsupervised learning, and (3) reinforcement learning.

Algorithms falling into the first category are trained with a lot of labeled data,
i.e. input-output pairs, in order to learn a function that maps an input to an output.
For example, an algorithm can be trained with several thousand cat and dog images.
For each image the algorithm gets the information which animal species it is. That is,
the input is labeled. In this way, supervised learning algorithms learn similarly to us
humans. After the training, a test data set is used to make statements about the quality
of the trained model. The actual learning process is thus based on a training data set,



while the evaluation of the trained model is carried out with a test data set (Marsland,
2014; Murphy, 2012; Russell & Norvig, 2010).
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Unsupervised learning approaches try to find patterns in existing data. Let us take,
for example, again a set of animal images. This time, the machine does not get the
information which picture is which animal, but the algorithm has to find categories
itself. A potential problem, but also a chance, is that the algorithm does the
categorization on its own. The animal photos will not necessarily be categorized
by animal species (dog or cat), but could alternatively, depending on the data
situation, result in clusters by color (black, brown or white animals). Compression
methods to filter out the least important components of the data and thus achieve a
reduction in file size are another common application of unsupervised learning (Saul
& Roweis, 2003). Other application areas for supervised learning include speech
recognition, face recognition, fraud detection or traffic light management
(Brynjolfsson & McAfee, 2017).

The third method category of ML is the so-called reinforcement learning. These
methods are supposed to learn an optimal strategy for a given problem. The basis is
an incentive or reward function that is maximized. The algorithm is not told which
action is the best in which situation. Instead, it receives feedback on the selected
action at certain points in time based on the incentive function—either a reward or a
penalty. In this approach, the developer specifies the current state of the environment
(e.g. the position in a chess game) and lists the possible action alternatives and
environmental conditions (e.g. the possible moves based on the rules of the game).
The algorithm must now find the moves that maximize its incentive function. In the
case of chess, an incentive function would be specified in such a way that the
objective is to win the game.

For a comprehensive and in-depth examination of ML methods see, for example,
LeCun et al. (1998), Krizhevsky et al. (2012), Bishop (2006) or Hastie et al. (2009).
The principle of supervised learning is most frequently applied today, as a great
advantage of this principle is the variety of possible applications. In addition,
numerous software tools are available, often on an open source basis, as for example
Weka or scikit learn.

Another term that has been used very frequently in recent times is deep learning.
This approach uses ANN as a basis. The basic idea behind the development of ANN
is to simulate the (human) brain. In general, an ANN consists of nodes (neurons) and
edges (synapses). Three types of neurons are distinguished, which are also called
units. Ultimately, the acquired knowledge of an ANN is represented by the weights
assigned to the edges between two nodes, which can be easily represented on the
basis of matrices. Further explanation of how ANN work is given in the appendix
(Section “Artificial Neural Networks”). These networks have a great advantage over
previous generations of ML: With the help of multi-layered networks, they can learn
interrelationships that remain hidden from simple ML algorithms. In addition, they
benefit more from a larger amount of training data (Krizhevsky et al., 2012). While
this might sound very complicated, it is fascinating how many software tools are
available today on an open source basis, which can be used to develop AI-based
algorithms in a quite simple way.



Therefore, it is necessary to evaluate the quality of AI algorithms before their use.
The basic principle shall be explained by the example of classification problems.
These include object recognition on images (Dalal & Triggs, ) or medical
diagnoses (Kononenko, . To test how well solutions of ML approaches work
for such problems, the so-called confusion matrix (CM) can be set up. This can be
explained most easily using a simple example: A trained ML-based application is to
be evaluated that uses health data to determine whether a patient has a disease or not.
The application thus indicates which of the classes—disease versus healthy—a
patient is classified into. In order to understand how well this classification works,
real diagnoses are used as benchmarks that indicate whether a patient really has the
disease or not. Thus, for each patient in the test data set, the actual class and the class
predicted by the application are available. If the two patient classes are then
compared, one of the following four cases is always present (Fawcett, :2006)

2001)
2005
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4 Measuring the Quality of Machine Learning Algorithms

ML approaches are suitable for a variety of application scenarios. In some cases, we
are talking about a general-purpose technology (Brynjolfsson &McAfee, 2017). ML
algorithms are not the magic bag for all more or less structured problems, even
though they are or will be superior to humans in many areas, e.g. in some areas of
medical diagnosis or object recognition. Rather, one has to be aware of existing
limitations. The algorithms achieve very good results or decisions in many scenarios,
although purely statistically speaking. However, this does not mean that they do not
make wrong decisions. For example, a Google AI solution mistook a cat on a picture
as guacamole (Anthalye et al., 2017). Another example is a turtle lying on its back,
which the algorithm mistook for a rifle. In the case of the cat guacamole example, the
algorithm was simply tricked. Knowing the parameters of the algorithm, the neural
network can be outsmarted by a few added strokes or dots. These examples sound
funny, but it becomes less fun when driving in an autonomous car and the algorithm
mixes up traffic signs, for example.

– True positive (RP): The patient has actually the disease and is classified as such
by the application.

– True negative (RN): The patient has not actually the disease and is classified
as such.

– False positive (FP): The patient has not actually the disease, but the application
incorrectly classifies the patient as having it.

– False negative (FN): The patient actually has the disease, but the application
incorrectly classifies the patient as not having it.

We then count how often these four cases occur in the classified test data to create the
CM. Figure 2 shows the general structure of a CM. It consists of the dimensions
actual value and predicted value, which divide the data into the four described cases.
Each of the four resulting cells reflects the number of each case. The four values
allow one to make a basic assessment of how well the application can correctly
assign classes (Fawcett, 2006). For example, Fig. 3 shows that a corresponding



model has classified relatively many patients as having the disease who are actually
not having it—161 patients were correctly classified as having it, while 55 were
incorrectly classified as having it. However, it is also apparent that the model can
classify patients not having the disease relatively well—302 patients were correctly
classified as not having it while only 18 were incorrectly classified.
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actual value

1 0

predicted value
1 true positive false positive

0 false negative true negative

Fig. 2 Structure of a confusion matrix

actual value

disease no disease

predicted value
disease 161 55

no disease 18 302

Fig. 3 Example for a confusion matrix

The CM can be used to gain insight into the distribution of actual and predicted
values. Organizations can use the information not only to understand how many
errors an application produces in total, but more importantly to control potential
error types. When relevant, ML algorithms can be parameterized during the devel-
opment to reduce one type of potential error, but this will usually lead to an increase
in the other type of error. For example, if it is more important that few false positives
are generated, the algorithm can be more focused on this type of defect, but this can
lead to an increase in false negatives. In some war-or-peace situations (such as an
early warning of a nuclear attack) false positives can lead to unnecessary reactions
and can therefore have extremely bad consequences so that special efforts need to be
taken to avoid the latter, which are the more difficult the less time there is for a
possible reaction.

A CM does not yet represent a concrete target value on the basis of which an ML
solution can be optimized. More concrete quality measures can be established based
on the values of the CM (Fawcett, 2006; Powers, 2011). As already emphasized at
the beginning, these quality measures only refer to classification problems for which
they have a certain standard status. For other types of problems there are less clear
measures, which are often defined for each use case. These include, for example, root
mean square error in forecasting (Hyndman & Koehler, 2006), (dis)similarity mea-
sures in clustering (Pfitzner et al., 2009) or health scores in predictive maintenance
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(Gouriveau et al., 2016). The interested reader can find an overview over different
metrics for measuring the quality of ML approaches in the appendix.

With all the positive aspects of AI in mind, it is also necessary to be aware of
potential weaknesses and risks. Especially in application areas such as healthcare or
the military, users need strong trust in the AI, for example when suggesting diag-
nosis decisions that can have a huge impact on a patient’s life. Military AI applica-
tions pose particular problems. For many users in practice, ML approaches are
experienced as a black box leading to a potential lack of trust. As a consequence,
researchers have started to work on explainable AI, in order to increase the trans-
parency of ML approaches. Another issue is the importance of balanced, complete
and representative training data. If a certain value for one feature is overrepresented,
there is an increased probability that the trained model is biased towards this value.
For example, if you train a classification model only with dog images, a cat image
will probably be also categorized as a dog. While sometimes, this is not an issue, it is
important to be aware of it, especially if fairness is important and a bias must be
prevented, e.g. regarding gender or race.

5 Conclusions

AI is on its way to changing society and the economy sustainably. While the
development of strong AI is still unrealistic, weak AI approaches have come a
long way in the last few years.

For a variety of application areas algorithms are already available in various tools,
many of which are published open source. Therefore, AI is becoming an integral part
of the business models of many providers. For many application areas, especially
those that have not used AI before, a substantial AI revolution can be expected that
can open unforeseen possibilities.

When developing individual AI applications, a major challenge is the availability
and quality of data, especially training data. Often, data is actually the bottleneck
nowadays, not algorithms or computation power. In order to successfully implement
and employ AI applications, a new data culture is required in companies where, for
example, silo mentality must be abandoned. Overall, data is increasingly becoming a
competitive factor for companies—not only as the basis for AI applications, but also
as the basis for a variety of strategic, tactical and operational decisions. The ICD, the
premier global market intelligence firm, has predicted that in 2025 49% of the
world’s data will be stored in public cloud environments (Reinsel et al., 2018).

Future research and developments will also have to focus on data privacy and
ethics when using AI in practice, e.g. when using patient data in healthcare applica-
tions, as well as with explainability and transparency of algorithms for users to
understand and trust them.



Appendix

Artificial Neural Networks

The basic idea behind the development of ANN is to simulate the (human) brain. In
general, an ANN consists of nodes (neurons) and edges (synapses). As the following
figure shows, three types of neurons are distinguished, which are also called units
(Goodfellow et al., 2016; Rey & Wender, 2018):
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– Input units receive the input data, for example pixels in an image recognition
algorithm or blood values when diagnosing diseases. Input units are denoted by x
in Fig. 6.

– Hidden units are located between input and output units and thus represent the
inner layers of an ANN. They can be arranged in several layers one after the other
and are denoted by h1. . .hn in Fig. 4.

Output units contain the output data, for example a classification dog or cat in an
algorithm for the recognition of animals. These are marked with y in Fig. 4.

A simple neural network contains only one hidden layer and is often already
sufficient for many applications. Deep neural networks have multiple hidden layers,
while the necessary or good number of layers and neurons depends on the individual
application.

As the figure shows, the neurons are connected by edges, expressed as arrows. If
we denote two neurons with i and j respectively, wij expresses the weight along the
edge between i and j (Fig. 5).

Fig. 4 Example for an artificial neural network

Fig. 5 Two neurons i and j and their respective weights wij
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Fig. 6 Representation of the weights

Ultimately, the acquired knowledge of an ANN is represented by these weights,
which can be easily represented on the basis of matrices (Fig. 6).

The input that one neuron receives from others depends on the output of the
sending neuron(s) and the weights along the edges. If Outputi denotes the activity
level of a sending neuron i, then the input that a neuron j receives can be expressed as
the sum over the weighted outputs of the neurons feeding it, adjusted with a bias
offset value bj, as in the following equation.

Inputj =
X

i

Outputi
�wij

� �þ bj

The output of a neuron is based on the input and an activation function. Various
function types are conceivable for this activation function a—in the simplest case it
is linear.

Outputi = a Inputið Þ

The weights represent the knowledge of the ANN. These weights are modified based
on learning rules. For example, when applying a supervised learning algorithm, the
weights are modified or adjusted based on the training data. The most common
procedure today is probably the so-called backpropagation method. Put simply, it
works in such a way that errors in the initial layer are proportionately attributed to the
error contributions of the hidden units involved and the weights are iteratively
adjusted (Rumelhart et al., 1986).

Machine Learning Metrics

Different metrics exist to measure the quality of machine learning approaches, often
depending on the type of approach that is used, e.g. classification, regression or deep
learning. Note that a metric is different from a loss function. A loss function maps
one or several variables to a real number and is often used as an objective function in
mathematical optimization, for example. While metrics are usually used to measure



the performance of an approach, a loss function is used to train a machine learning
approach.
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Classification Metrics

For classification problems several metrics exist, including accuracy, precision,
recall and the F1 score. They can all be computed based on the CM (see Fig. 3).

Classification Accuracy

Classification accuracy is computed as the ratio of the number of correct predictions
to the total number of input samples. While it is a simple metric, it is problematic
when the costs of one type of misclassification are very high. If a patient is wrongly
classified as non-cancerous, for example, it can have fatal consequences.

In general, accuracy can be computed as:

accuracy= number of correct predictions
total number of predictions

With respect to the CM, accuracy can be computed by taking the values on the main
diagonal:

accuracy= true positivesþ true negatives
total number of predictions

Detection Rate

The detection rate gives the percentage of correctly predicted trues (or 1 s) with
respect to the total number of predictions:

detection rate= true positives
total number of predictions

Precision

The precision or the positive predicted value gives the percentage of correctly
predicted 1 s with respect to all predicted 1 s:



precision= true positives
true positivesþ false positives
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Recall

A recall score measures the percentage of correctly predicted 1 s with respect to all
actual 1 s. It is also called sensitivity or true positive rate:

recall= true positives
true positivesþ false negatives

Specificity

The specificity is also called the true negative rate. It determines the percentage of all
0 s that were correctly predicted:

specificity= true negatives
false positivesþ true negatives

Balanced Accuracy

The balanced accuracy is computed as the mean of recall and specificity and
therefore balances the percentages of correctly predicted 1 s and 0 s:

balanced accuracy= recall þ specificity
2

F1 Score

The F scores combine the precision and recall metrics. In general, an F score for a
value β can be computed as:

Fβ = 1þ β2
� � � precision � recall

β2 � precisionþ recall



In the special case for β = 1, the F1 score is the harmonic mean between precision
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and recall. The range for the F1 score is [0, 1]. The greater the F1 score, the better the
performance of the model. F1 can be computed as:

F1 = 2 � precision � recall
precisionþ recall

Regression Metrics

Typical regression metrics are the mean absolute error and the mean squared error.

Mean Absolute Error

The mean absolute error is equal to the average of the absolute differences between
the original values vi and the predicted values wi. It expresses how far the predictions
were from the actual values. However, it does not give the direction of the error,
i.e. whether data was over or under predicted. WithN denoting the number of values,
it can be computed as:

mean absolute error= 1
N

XN

i= 1
vi -wij j

Mean Squared Error

The mean squared error and the mean absolute error are comparably similar. The
only difference is that the mean squared error uses the average of the squares of
difference between the original and the predicted values. Due to taking the square of
the error, larger errors become more dominant compared to smaller errors. There-
fore, when using the mean squared error, the focus is on larger errors:

mean squared error= 1
N

XN

i= 1
vi -wið Þ2

The root mean squared error takes the square root of the average of the squares of
difference between the original and the predicted values and is therefore also
sensitive to outliers.
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The Military Rationale for AI

Frank Sauer

Abstract This chapter introduces artificial intelligence (AI) and machine learning
as major enablers of military innovation, especially regarding autonomy in weapons
systems. It discusses the potential of AI where sensing, decision-making and acting
are concerned. It also sheds light on the risks involved and questions claims about
the effectiveness, reliability and trustworthiness of AI in military settings.

1 Introduction

“Artificial intelligence” (AI) is an umbrella term for a variety of different computing
techniques and procedures that automate tasks which previously required the appli-
cation of human intelligence. The goalposts of what is considered artificially intel-
ligent are constantly moving—what was once considered AI (such as computers
playing chess) is regarded as just another piece of software today. Despite its
fuzziness, the term AI is unfortunately used ubiquitously. Machine learning (ML),
more particularly the “deep learning” variant using artificial neural networks, is a
technique within the field of AI that has been responsible for most of the progress
that AI has made in the commercial sector over the last decade.

AI and ML are still poorly understood in that they are simultaneously over- and
underestimated. They are overestimated because the terms “intelligence” and “learn-
ing” evoke the wrong associations in many observers, namely associations with
human learning and human intelligence—both of which differ significantly from
how ML-based AI works and what this technology is currently capable of. After all,
ML-based artificial “intelligence” is limited to extremely narrow tasks. It is, as Gary
Marcus (2018a, b) famously put it, “greedy” (hungry for immense amounts of data),
“brittle” (failing spectacularly when confronted with tasks differing slightly from
those it was trained and optimized for) and “opaque” (prone to inexplicable errors,
making it a black box impossible to debug). In other words, even the currently most
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powerful ML-based AI is neither comparable to the immediate one-shot learning
humans are capable of nor to the level of understanding and the flexible, generalized
skills and problem-solving competences that come with human intelligence. At the
same time, the implications of AI remain underestimated because prematurely
deployed AI applications create serious risks.
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AI is one of the major driving forces of the currently emerging fourth industrial
revolution in which technologies in the digital, physical and biological spheres are
generating new types of innovation. Almost all aspects of life are already or will
eventually be touched by it—from the way humans communicate to the way they
conduct commerce all the way to the instruments and institutions with which they
govern themselves. Consequently, when asked in private about the rationale for
employing AI in the armed forces, more than a few military officials around the
globe phrase their answers something like this: “We have to do it because everyone
else is doing it.”

In other words, first, a full-fledged “civil-military-fusion” race to insert more
commercial AI into the military in general is already underway and, second, an
unregulated dynamic involving greater autonomy, especially of weapons, is
evolving.

Section “AI and the Military” will first sketch the political frame of reference for
this race, followed by an overview of some of the areas where military AI currently
being discussed is being deployed. Section “Weapon Autonomy and “Fighting at
Machine Speed”” will then focus on the incentive for using AI to increase weapon
autonomy and increase operational speed. Section “Conclusion: The Hype Is Real—
And So Are the Risks” will offer critical concluding thoughts.

2 AI and the Military

AI allows for an increase in automation, that is, for machines to perform a variety of
relatively complex tasks with minimal or no human assistance or supervision. Just as
militaries were keen to adopt the steam engine, electricity or electronics in the past,
they hope nowadays to benefit from this new innovation as well (Horowitz et al.,
2018, pp. 3–5; DSB, 2016, pp. 6–11).

The primary frame of reference for this competitive process is the great power
rivalry between the US, China and, although to a somewhat lesser extent, Russia
(Sauer, 2019; Kania, 2020; Kühne, 2020, pp. 12–26). Within that geopolitical
context, data is often described as the oil of the twenty-first century. This popular
analogy is flawed (not least because data, unlike oil, is not a finite resource), but it
nevertheless draws attention to a connection that is decisive for current great power
dynamics in general (Horowitz, 2018) and automation in warfare in particular:
Data—the capabilities and possibilities for collecting it, the capacity for processing
it by means of AI, and thus the opportunity for converting it into military (and
economic) power—will be of crucial importance to the world order in the age of
digitization.
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In the US, the Pentagon is seeking closer ties to technology companies in Silicon
Valley and has declared the military use of big data and AI technologies a vital
element in its overall strategy to retain conventional superiority—in what has come
to be known as the “Third Offset Strategy” (Hagel, 2014)—and develop a generally
more “lethal”military force. China stated in 2017 that its official goal was to achieve
global leadership in AI innovation by 2030 (Kania, 2017, p. 4). Beijing is working
on civil-military integration as well. The country also intends to make military use of
the results of its breathtakingly fast race to catch up commercially in what has come
to be known as the “intelligentisation” of warfare (Kania, 2017, 2019, 2020;
Saalman, 2019). Meanwhile, Russian President Vladimir Putin (quoted in Vincent,
2017) famously put it as follows: “Artificial intelligence is the future, not only for
Russia, but for all humankind. It comes with colossal opportunities, but also threats
that are difficult to predict. Whoever becomes the leader in this sphere will become
the ruler of the world.”

According to the Future of Life Institute’s global AI policy database (FLI, 2020),
36 countries around the world have issued national AI strategies—among them the
US, China, Russia, Canada, India, Brazil, Japan, Australia and various European
countries such as France, Germany, Italy, Poland, Sweden and Norway (Franke,
2019; Franke & Sartori, 2019). Regarding military AI in particular, the US has
commissioned a series of studies and white papers to guide the policy-making
process (DIB, 2019; DSB, 2016); similarly, France (2019, p. 3) has published an
AI task force report which serves as the artificial intelligence strategy of France’s
Armed Forces Ministry. With Department of Defense Directive 3000.09, the US
remains the only country to have issued an explicit national doctrine for using
AI-enabled autonomy in weapons systems (DoD, 2017 [2012]).

Generally speaking, the use of AI will affect the military—regarding both
conventional and nuclear forces—wherever sensing, decision-making and taking
action are involved.

AI is envisaged as improving the collection and subsequent analysis of data,
enabling better human decision-making and improving command and control.
Computer vision provides one example of this. It is already being used to reduce
the workload of human analysts by sifting through huge amounts of visual data such
as, for instance, video streams from drones, and thus enhancing intelligence, sur-
veillance and reconnaissance (ISR) capabilities. A future step currently envisaged is
a “common operating picture” to replace the multitude of different information
sources gathered from various platforms and in various formats (Sayler & Hoadley,
2019, p. 12). The resulting information dominance and greater “battlespace aware-
ness” (DoD, 2018, p. 18), potentially with even more granularity through the
networking of small, distributed, persistent sensors systems, promises to fulfill the
old hope of lifting the fog of war and, in this manner, also reducing the likelihood of
receiving friendly fire—a major incentive to casualty-averse modern militaries
(Schörnig & Lembcke, 2006). Targeting, too, is improved when visual (potentially
combined with other kinds) data can be automatically analyzed, and potential targets
highlighted on a screen for human operators. The US Army’s Advanced Targeting
and Lethality Automated System (ATLAS) system for ground combat vehicles, for



example, supposedly makes it possible to engage targets three times faster than the
comparable manual process (Tucker, 2019). Increased precision during an engage-
ment can result from this increase in targeting speed. It is important, however, not to
conflate automation, precision and discrimination in this context. Automation can
increase a weapon systems’ precision-strike capability which in turn allows the
system to be used in a manner that discriminates better between legitimate military
targets and civilians, thus increasing compliance with international humanitarian law
(IHL). A good hypothetical example is a cruise missile autonomously aborting its
attack run due to the unexpected presence of civilians in the vicinity of the target.
However, an automated weapon could also be used—unlawfully—to specifically
attack illegitimate targets with a high degree of precision. A swarm of small anti-
personnel drones targeting and killing members of a specific group only, identified
for instance by superficial features such as skin color, would be a hypothetical
example in this case. In other words, the functionality of the weapons system, its
capabilities regarding accuracy and error probabilities when attacking a target, and
the way such a system is deployed on the battlefield must all be viewed separately
when assessing the interplay of automation and IHL compliance.
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AI-enabled handling of big data is also highly relevant to signals intelligence
(SIGINT). It permits analysis of communications online for early detection and
warning purposes on an unprecedented scale. Active operations are also enabled,
of course. Information operations deploying artificially generated videos, photos or
even just texts (for example by using OpenAI’s powerful GPT-3 language generator)
can be used to spread false information or influence public discourse—which is why
they are currently also a cause for great concern due to their potentially destabilizing
effects when they spread virally through social media (Sayler & Hoadley, 2019,
pp. 11–12; Williams & Drew, 2020; Hersman, 2020).

In nuclear early warning, AI is conceptualized as helping with multisensor data
fusion and analysis: “[S]tates could decide to automate additional components of
early warning because autonomous systems can detect patterns and changes in
patterns faster than humans. This could have potential benefits for nuclear security
and stability, because well-functioning algorithms could give decision makers more
time in a complex environment” (Horowitz, 2019a, p. 80). Similarly, pattern recog-
nition could also help to strengthen parts of the nuclear enterprise against
cyberattacks. Military planners anticipate that AI will improve systems monitoring
and detection of anomalous behavior as well as autonomously generating patches of
software vulnerabilities and mounting swift, automated responses (“hack backs”)
(Sayler & Hoadley, 2019, p. 11).

Military logistics is another, comparably mundane field where AI is expected to
have a major impact. One popular application of AI aims at improving maintenance
for equipment and major weapons systems, allowing a shift from a one-size-fits-all
approach to maintenance schedules tailored to every individual system (Sayler &
Hoadley, 2019, pp. 10–11). Adaptive logistics such as autonomous vehicles carrying
out just-in-time land-based or airborne deliveries of, for instance, fuel and ammuni-
tion to an area of operations, are another application, improving agility and
supporting “dominant maneuver” on the battlefield (Allen & Chan, 2017; Sauer,



2018; Cuihong, 2019, p. 66; Kozyulin, 2019, p. 79; Davis, 2019; Boulanin et al.,
2020; Kühne, 2020, pp. 35–44; DSB, 2016).
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In addition to this wide range of applications, and as already alluded to in the
discussion of AI-enabled targeting, militaries also intend to benefit from AI “at the
sharp end,” that is, for immediate use in weapons systems.

3 Weapon Autonomy and “Fighting at Machine Speed”

The level of “autonomy”—as it has come to be called—in weapon systems is
steadily increasing (Roff, 2016; Boulanin, 2016; Boulanin & Verbruggen, 2017;
Scharre, 2018). The term “autonomy” is unfortunate because it is prone to be
misleading for some people, resulting in misconceptions such as the anthropomor-
phization of weaponry and notions of humanoid robots going rogue (van Rompaey,
2019; Crootof, 2018). Nonetheless, it is now commonly used.

Weapon autonomy is a military development of paramount importance; it has
been described as “the third revolution in warfare, after gunpowder and nuclear
arms” (FLI, 2015) and arguably represents the area where AI is used in the military
with the most far-reaching consequences.

A functional understanding of weapon autonomy has found broad acceptance in
the scholarly literature. It is also gaining acceptance in the diplomatic debate at the
United Nations Convention on Certain Conventional Weapons (CCW) in Geneva,
the epicenter of the global discussion of possible international regulation since 2014
(Rosert & Sauer, 2020). The functional understanding has emerged not least because
the United States and the International Committee of the Red Cross (ICRC) have
adopted it (DoD, 2017 [2012]; ICRC, 2016; Scharre, 2018).1

From a functionalist point of view, the issue is best understood as one of
autonomy in a weapons system, that is, of the machine rather than a human
performing a certain function (or certain functions) during the system’s operation
(Boulanin & Verbruggen, 2017). The upshot of focusing solely on who, human, or
what, machine, performs specific functions is that clearly distinct definitions of
autonomy and automaticity are not required—after all, there is no clear difference
made between the two even in technical and engineering disciplines. In fact, the two
terms can be—and often are—used interchangeably. In addition, a functionalist can
remain agnostic regarding the underlying technology. In functional terms it makes
little difference what exact process allows the weapon system to perform an oper-
ational function.

Every military operation concluding with an attack on a target can be systema-
tized along the steps of a “kill chain” or “targeting cycle” (iPRAW, 2019). This

1For a more detailed explanation of why adopting a functionalist rather than a categorical approach
to conceptualizing weapon autonomy is indeed sensible for more than one reason, see Rosert and
Sauer (2020).



includes finding, fixing, tracking, selecting and engaging the target (as well as
assessing the effects afterwards). An autonomous weapon completes this entire
targeting cycle—including the final stages of selecting and engaging the target
with force—without human intervention (or even supervision, for that matter). The
last two functions, which the ICRC calls “critical functions” (ICRC, 2016, p. 7), are
focused on specifically because most of the political, legal and ethical risks currently
being discussed with regard to weapon autonomy (Sauer et al., 2018) derive from
handing control of the use of force from a human to a machine during the final stages
of the targeting cycle. In fact, after announcing the ATLAS targeting system
mentioned above, the US Army was forced to clarify that this system is not designed
to delegate the firing decision to the machine (Tucker, 2019). At least for now, a
human still pulls the trigger on the target the AI has—swifter than a human could—
selected for engagement.
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AI techniques such as ML are not necessarily required to give a weapon system
autonomy (or, for that matter, automaticity) in the critical functions of target
selection and engagement. The close-in weapon system Phalanx on navy ships or
the Patriot missile-defense system, to name only two examples, have had this
autonomous functionality for decades. Obviously AI is a very powerful enabler
(Horowitz, 2018, p. 39). Thus, weapon autonomy is not new, but, for the first time,
recent innovations in AI allow the development and use of weapon autonomy on a
much larger scale. In effect, it is only recently that autonomous targeting has started
to leave its former military niche applications, most prominently represented by
terminal defense systems, such as the two mentioned above, and be adopted more
broadly.

Autonomy renders constant communication and control links optional. The effect
of making a weapons system autonomous, that is, delegating decision-making
authority from a human operator to the unmanned system, is not restricted to
enabling it—in contrast to a remotely controlled one—to continue operating even
in environments where communication is degraded or denied (Scharre, 2020,
pp. 105–110). More importantly, weapon autonomy means that the inevitable
delay between a remote human operator’s command and the system’s response is
eliminated. This results in far more rapid reaction times, generating a key tactical
advantage over any adversarial system that is controlled remotely and thus neces-
sarily slower. In fact, the prospects of gaining the upper hand by allowing for the
completion of the targeting cycle at machine speed is, despite the accompanying
ethical and legal misgivings, arguably the most important factor propelling current
efforts to make weapons autonomous and remove human control entirely (Altmann
& Sauer, 2017; Horowitz, 2019b, p. 769; Scharre, 2020, p. 62).

At the 2019 Dubai Airshow, Chief of Staff of the US Air Force Gen. David
Goldfein presented a test exercise in which a US military satellite located an enemy
navy vessel and instructed an airborne surveillance system to determine the exact
location of the target. Coordinates were passed on to a command and control aircraft
which selected a naval destroyer and tasked it with the attack. The only human
involved in this entire process was located on the destroyer, and was responsible for
releasing the anti-ship missile which had been algorithmically selected for the attack



(DefenseNews, 2019). Weapon autonomy in (widely distributed) systems is thus not
a technology of the future. The human in examples such as ATLAS or the US Air
Force’s automated kill chain is present due to obligations derived from policy, not
limits of technology.
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4 Conclusion: The Hype Is Real—And So Are the Risks

In the introductory section, AI was described as simultaneously over- and
underestimated—this is equally true for the civilian as well as the military world.
Missy Cummings (2020) thus remains skeptical about the real transformative poten-
tial of AI in the military. She draws direct parallels to the commercial world, where
current progress in AI, while delivering qualified successes, has at the same time
been completely “overhyped”—all while remaining brittle and limited in its appli-
cation, even in its most advanced implementations such as computer vision. She
highlights especially the automotive industry’s exaggerated promises for self-
driving cars as a key example. “The inability of AI to handle uncertainty raises
serious questions about how successful it will be in military settings,” she points out.
What is more, the exaggerated expectations spilling over from the civilian into the
military world, she suggests, could lead countries to merely pretend to have AI
capabilities—a “fake it till you make it” phenomenon sometimes also called
“fauxtomation” in the commercial world, when start-up companies pretend to have
developed some new “AI” product while actually selling customers either ordinary
software or cheap human labor disguised as results derived from AI. Within the
geopolitical framework sketched out above, that is, the great power race for
AI-enabled armed forces, the already observable practice of exaggeration and
pretense perpetuates mutual misperceptions and unnecessarily inflates threat assess-
ments (Cummings, 2020).

As a field of research, AI is many decades old. Deep learning has only very
recently moved into the limelight, and many AI applications—civilian and military
alike—still make use of “good old-fashioned” AI (GOFAI) techniques such as rules
and decision trees, or a combination of GOFAI with ML. Nevertheless, the current
dominance of “connectionism” over “symbolism” in the context of neural nets and
deep learning is largely responsible for the exaggerated expectations AI is expected
to fulfill. The idiosyncrasies and limitations of AI imply that military AI might in fact
not deliver on many of the promises sketched out in sections “AI and the Military”
and “Weapon Autonomy and “Fighting at Machine Speed””.

First, while it is true that modern militaries are forced to handle high volumes of
data, it is important to consider this in a differentiated manner and ask what data is
available when and where. Especially with regard to autonomous target recognition
and subsequent engagement, the context of use is key. An anti-ship missile looking
for specific silhouettes of navy ships to identify as targets, an application drawing on
available data already in use and a seemingly easy target, provides one example.
Another, much more difficult context of use would be the cruise missile mentioned



above that looks for civilians in targeted area to avoid collateral damage. Data
availability aside, it is in fact unclear how this latter application could be realized
given the technology of the present and the foreseeable future. After all, civilian-
ness, albeit a cornerstone of IHL, is a fuzzy concept and is defined ex negativo
(Rosert & Sauer, 2019, p. 370). Current machine learning systems, even with a high
volume of training data available to them, lack the required capacity to understand
social context at a very basic conceptual level. Not to mention the fact that, unlike in
the commercial sector, training data for military applications is usually scarce.2
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Second, both examples—the anti-ship missile looking for navy vessels and the
cruise missiles trying to avoid civilians—fail to take account of the fact that deep
learning-based AI applications such as computer vision are prone to error and
manipulation. Self-driving cars go through stop signs minimally altered with reflec-
tive tape, and even the most advanced image recognition algorithms can be tricked
into confusing turtles with rifles or school buses with snow plows (Athalye et al.,
2018; Marcus, 2018a, c), in addition to the problems arising from biased datasets
(Vincent, 2020; Sayler & Hoadley, 2019, pp. 29–31; Horowitz et al., 2020; Cum-
mings, 2020). Clearly then, overreliance on AI targeting also opens up new options
for adversaries clever enough to deceive the system. A handful of soldiers dressed
and behaving like civilians would fool the hypothetical cruise missile, if it were ever
developed and used in the field, into aborting its operation. A few retractable dummy
structures and antennas deployed by ships under attack could deceive the “smart”
anti-ship missile. The fact that very expensive AI-enabled weaponry could poten-
tially be tricked quite easily and cheaply, a fact derivable from knowing the
capabilities and limits of the underlying technology, is rarely discussed—because
it runs counter to the dominant military AI narrative.

Consequently, while it is currently open to question whether AI will eventually
achieve the levels of reliability and trustworthiness that would be required for many
of the applications currently envisaged for military purposes, what is emerging with
absolute certainty are the risks of a new arms race. One risk indicator is the ongoing
arms dynamic with regard to weapon autonomy that fuels strategic instability and
risks of inadvertent escalation (Altmann & Sauer, 2017; Scharre, 2020). Another
indicator is the potential crossing of legal and moral boundaries: Weapon autonomy,
recklessly and prematurely applied in an effort to retain the technological edge in the
arms race, might end up failing to improve and in fact degrading compliance with
IHL. At the same time, it risks infringing on the dignity of human beings—whether
combatants or civilians—by reducing them to a mere data point and having

2Observers who expect the development of weapon autonomy to allow for an overall increase in
IHL compliance thus generally argue in a two-step fashion. First, weapons selecting and engaging
targets autonomously would be used only in circumstances where no civilians and civilian infra-
structure are present, thus removing the necessity of even having to discriminate between lawful and
unlawful targets. Later, in a second step, technology would have matured enough for the system to
be able to perform IHL compliance at least at a human level on its own. See Schmitt and Thurnher
(2013, pp. 246–248); Anderson and Waxman (2013, pp. 11–13); Anderson et al. (2014,
pp. 405–406).



machines snuff out life without human consideration or accountability (Asaro, 2012;
Sparrow, 2016; Amoroso & Tamburrini, 2017; Rosert & Sauer, 2019; Skerker et al.,
2020).
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In sum, a widespread misjudgment of AI’s strengths and weaknesses is in large
part responsible for making exaggerated claims for the introduction of AI in military
applications. Accusations of sensationalism (Ford, 2020, pp. 1–2) made against
those favoring regulation who put forward arguments such as the ones presented
above, some of whom make use of “killer robot” rhetoric (KRC, 2019), will remain
ineffective as long as militaries are deceived by exaggerated claims and continue to
label programs for AI-enabled drones “Skyborg” (Gunzinger & Autenreid, 2020).
Instead of acknowledging the limits of excessive claims regarding technology and
treating the militarizing of AI with the requisite cautiousness, prudence, and inter-
national regulatory safety measures, now a blind race is underway in which every-
thing in the military nowadays is about to become “enhanced” or “powered” by AI in
some shape or form. But without precautions and safeguards against the accompa-
nying risks, the long-term drawbacks are certain to outweigh the short-term benefits.
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Military AI Applications: A Cross-Country
Comparison of Emerging Capabilities

Sophie-Charlotte Fischer

Abstract A new wave of progress in artificial intelligence (AI) is attracting con-
siderable interest from militaries across the globe and a growing number of countries
are already actively pursuing military AI capabilities. The purpose of this chapter is
to provide an accessible review and comparison of the emerging military AI
capabilities of four countries—the United States, China, France, and Israel. While
only a preliminary assessment is possible at present, important clues can be derived
from analyzing and comparing the kind of applications that states are investing in
and the selected areas in which they are already deploying AI. Related to these
aspects, the chapter also examines whether the four countries have introduced any
restrictions for the military use of AI, so far.

1 Introduction

Militaries routinely acquire new technologies because they have the potential to
enhance existing capabilities or to enable entirely new ones. Novel technologies can
also have a significant impact on how wars are fought and alter the strategic
environment in which military forces operate (James, 2013). Currently, a new
wave of progress in artificial intelligence (AI)—“the ability of machines to fulfill
tasks that normally require human intelligence” such as “recognizing patterns,
learning from experience, drawing conclusions, making predictions, or taking
action”—is attracting considerable interest from militaries across the globe (U.-
S. Department of Defense, 2018, p. 5).

During his confirmation hearing in 2019, former US Secretary of Defense Mark
Esper stated that “whoever masters it [AI] first will dominate [on the] battlefield for
many, many, many years” (2019, p. 64). Esper’s statement reflects the extravagant
promises associated with military AI applications: current assessments suggest that
AI could significantly improve accuracy and speed in areas ranging from military
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logistics to decision-making on the battlefield (Scharre, 2020). However, the con-
tinuing development of AI complicates assessment of its military effects and makes
it difficult to separate fact from fiction. Moreover, safety and reliability consider-
ations as well as ethical and legal concerns could restrict how militaries use AI
(Horowitz, 2018).
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Nonetheless, an increasing number of countries are already exploring military AI
applications. While many of these efforts are still in their initial stages, I argue that
important clues can be derived from analyzing and comparing how different coun-
tries are pursuing military AI such as the kind of applications they are investing in
and the selected areas in which they are already deploying AI. This can amplify the
nascent academic and policy discourse on how AI impacts the military and the
broader issue of security. Related to these aspects is the question of whether
countries have already put restrictions in place for the military use of AI. The
purpose of this chapter is to provide an accessible review and comparison of the
emerging AI capabilities of four countries—the United States, China, France and
Israel—in the military realm.

2 Assessing Emerging Military AI Capabilities:
A Framework for Analysis

How can we take stock of and compare the emerging military AI capabilities of
different countries? The answer to this question is far from straightforward. The
emerging nature of AI, its character as an enabling technology, and the lead of the
commercial sector in AI development each make an assessment more complicated.
In this section, I will identify three dimensions—the sources of military AI, areas of
military AI application, and the risks associated with military AI applications—and
base the subsequent analysis of the four countries on these dimensions.

2.1 The Sources of Military AI

During the Cold War, there were often trickle-down effects from military technology
to the civilian realm (Alic et al., 1992). However, today, private-sector tech compa-
nies are leading the way in many high-tech areas, including AI (Villani, 2019;
Laskai, 2018). Consequently, in order to bring AI into the military realm, militaries
need to look to and increasingly collaborate with technology companies that are
primarily focused on commercial markets.

However, to further complicate the assessment, a strong commercial AI sector is
not necessarily equivalent to powerful military AI capabilities. This is not only due
to the potential unwillingness of commercial companies to collaborate with militar-
ies (Wakabayashi & Shane, 2018). Several military problems cannot be directly



solved by means of commercial AI applications. While some may be directly
transferable “off-the-shelf,” others must undergo significant modification before
they are viable for use by the military, a process which poses substantial integration
challenges (Sayler, 2019). Moreover, for some military AI applications, commercial
technology may be unsuitable and defense organizations or traditional defense
contractors need to develop them. As a result, it is far from straightforward to infer
that a strong commercial AI industry automatically translates into strong military AI
capabilities.
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Nevertheless, and despite this caveat, when evaluating what (potential) military
AI capabilities countries have and because many of the underlying AI technologies
are dual-use, looking at defense spending and the work of traditional defense
contractors alone is not sufficient. AI investment in the civilian realm and militaries’
strategies to develop AI must also be taken into account. For these reasons, I will
assess investments in both sectors and also examine whether and, if so, how
militaries collaborate with civilian AI companies.

2.2 Areas of Military AI Applications

When looking at applications of AI in the military realm, it is essential to underline
that AI is neither a weapon nor a discrete technology, but instead can be viewed as an
enabling technology akin to electricity (Scharre, 2020). AI has a broad range of
applications across many other technology fields in the civilian as well as the
military realm (Horowitz, 2018). These properties of AI make the assessment of
states’ military AI capabilities even more complicated, as they are difficult to grasp
and cannot simply be quantified like nuclear warheads, for example. However, it is
possible to investigate in what areas AI could be applied and assess states’ ongoing
or planned activities.

Given the enabling character of AI, there is a seemingly infinite number of
applications in the military realm (see also the text by Frank Sauer in this volume).
At present, AI is expected to be particularly useful in intelligence, surveillance,
reconnaissance (ISR) because it excels at analyzing and finding patterns in vast
amounts of data (Franke, 2019). Moreover, AI has the potential to strengthen both
offensive and defensive cyber capabilities. AI could also be deployed for informa-
tion operations in order to either create content such as deep fakes or to identify
forgeries generated using AI (Sayler, 2019). Weapon system command and control
is another area where AI may prove useful. AI systems could gather and fuse
information from all military domains and provide commanders with a range of
actionable options based on their assessment (Horowitz et al., 2018). Similarly to the
civilian realm, militaries could increasingly deploy semiautonomous and autono-
mous vehicles and use them to explore and operate in potentially hostile environ-
ments. Currently, the most controversial military AI application is in lethal
autonomous weapons systems (LAWS), which denotes weapons system that could
autonomously identify and engage targets (see also the text by Anja Dahlmann in



this volume). Last but not least, other more mundane but promising applications
include the training of soldiers as well as military logistics, where AI could be used
for tasks such as predictive maintenance of military aircraft (Sayler, 2019).
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The different areas of application outlined above provide guidance for assessing
where countries are already investing in AI, are already using it, or plan to do so in
the future. It is of particular interest, whether the areas of AI applications that
countries focus on are markedly similar or differ across countries, and if so how.

2.3 Risks Posed by Military AI Applications

While AI holds the promise of delivering significant military advantages across a
number of application areas, its deployment can also introduce significant risks.
Some of these risks are technological and operational. While the development of AI
has advanced significantly over the last two decades, current AI systems are still
brittle and often behave unpredictably. Other risks include, for example, adversarial
attacks, data poisoning and reward hacking (Scharre, 2020). Moreover, the deploy-
ment of AI systems for military purposes also raises ethical, moral, and legal
challenges, especially in relation to the possible use of LAWS. Since 2014, states
have been discussing questions related to emerging technologies in the area of
LAWS in the framework of the United Nations (UN) Convention on Certain
Conventional Weapons (CCW).

In order to avoid some of these risks, states may want to constrain the develop-
ment, production and/or use of AI, at least in certain areas of application or in certain
contexts. Such regulations could impose important limitations on states’ deployment
of military AI capabilities. In the subsequent review, I will therefore also assess
whether countries have already imposed limitations on the development and/or use
of AI in the military realm and if so, what form these limitations take.

3 Assessing Military AI Capabilities: A Review of Four
Countries

The objective of this section is to provide detailed insights into the emerging military
AI capabilities of different countries. However, this level of detail means narrowing
the focus to a small number of states. The choice of countries is not strictly
representative, but also based on three factors: a clear intent to deploy AI in the
military realm, the size and status of the domestic civilian AI industry, and the
geostrategic context the states are situated in. The first two countries that I analyze
are the US and China, which are considered “AI superpowers” based on the size and
status of their civilian AI industries. Furthermore, the two countries are of particular
interest, as the US retains the most powerful military globally, while China has



invested heavily in military modernization in recent decades and is regarded as the
US’ most likely contender for supremacy. Importantly, however, while most atten-
tion has, so far, focused on the US and China, AI could also empower other
prosperous and technologically advanced states and affect their status in the inter-
national system (Barsade & Horowitz, 2018). I chose to study France and Israel as
well because they are both classified as “second-tier” civilian AI powers, have
significant military capabilities and represent two very different geostrategic
contexts.
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Based on the case selection criteria outlined above, I decided not to assess a
number of other interesting countries in this chapter. Russia most notably is also
actively pursuing military AI capabilities, but has a comparatively weak civilian-
sector AI industry and clearly trails many other nations in terms of AI commercial-
ization and cutting-edge research. However, although Russia is excluded from this
study on these grounds, it could be a very interesting case for testing the link between
the strength of states’ civilian-sector AI industry and their military AI capabilities in
future research. As some have argued, Russia was never a leader in the development
of internet technology, but has become a highly disruptive force in cyberspace
nevertheless (Allen, 2017; Sayler, 2020). This thus poses the question whether a
similar pattern with regard to Russia’s AI capabilities will be seen in the future.

3.1 The United States

Since the beginning of the Cold War, the US advantage in technology has
underscored its military superiority. The Department of Defense’s (DoD) First and
Second Offset Strategy in the 1950s and 1980s respectively reflected the US
military’s focus on technological quality rather than quantity. However, as a conse-
quence of especially China’s military modernization, the relative technological
advantage of the US has been eroding over the past two decades. The increasing
interest of the US military in AI can be traced back to the US Third Offset Strategy
that was presented by then Secretary of Defense Chuck Hagel in 2014 and is driven
by both novel technological opportunities and broader geopolitical transformations
(Hagel, 2014). AI is one of several technologies that the US is seeking to develop in
order to maintain its technological edge and sustain a strategic advantage over
competitors (Ellman et al., 2017).

The United States is regarded as the world’s current leader in AI, because of its
unrivaled lead in workforce talent, hardware and quality of publications and patents
in the AI field (Ding, 2018; Breitinger et al., 2020). In 2019, former US President
Trump signed an executive order on AI which laid the foundation for the US Federal
Government’s American AI Initiative (Saslow, 2020). The initiative has five key
pillars: research and development (R&D), infrastructure, governance, workforce,
and international engagement. However, already in 2018, the Pentagon specified its
AI ambitions in the DoD’s military AI strategy document and the separate US
Airforce AI strategy annexed to it (U.S. Department of Defense, 2018).
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3.1.1 Sources of Military AI

The implementation of these plans is backed by significant investments, although
critics lament the fact that the current AI budget of the DoD is no more than a starting
point. Defense-related spending on AI was around $4 billion in 2020 (Harper, 2020).
What is noteworthy, however, is that the US government allotted the major share of
its overall spending on AI for 2020 to the military rather than the civilian sector
(Hao, 2019). In order to streamline the development and adoption of AI, the
Pentagon founded the Joint Artificial Intelligence Center (JAIC) in 2018 (Leung &
Fischer, 2018). The military services, Defense Advanced Research Projects Agency
(DARPA), and the Intelligence Advanced Research Projects Agency (IARPA) carry
out AI R&D (Sayler, 2019).

Nonetheless, the DoD is acutely aware that the bulk of cutting-edge AI R&D is
currently taking place in the private sector. The 2017 National Security Strategy, for
example, highlighted the need to foster collaboration with private sector actors (The
White House, 2017). To that end, the Pentagon is seeking to access commercial
innovation in AI and other technologies through initiatives like the Defense Inno-
vation Unit (DIU), an outpost of the DoD in US innovation hubs including Silicon
Valley, Austin, and Boston. However, despite these ambitions, the DoD has at times
been faced with hurdles establishing public-private partnerships, as companies were
hesitant to collaborate with the military for economic (Olney, 2019) or moral reasons
(Kuzma & Wester, 2019). For example, following a wave of protest from
employees, Google decided not to renew contract with the Pentagon on Project
Maven, an initiative that uses AI to support the processing, exploitation, and
dissemination of video and imagery intelligence collected by drones (Wakabayashi
& Shane, 2018).

3.1.2 Areas of Military AI Application

Nevertheless, and despite some setbacks, the Pentagon is already developing,
testing, and even fielding the application of AI in diverse areas, including ISR,
logistics, cyber, information operations, (semi)autonomous vehicles, and command
and control. Currently, the US DoD is working on over 600 active AI projects
(Sayler, 2020). For example, the Army’s Logistics Support Activity collaborates
with IBM on the optimization of the maintenance schedules for the Stryker fleet. In
the area of information warfare, DARPA initiated the so-called “Media Forensics
project” to counter fake news and to improve the analysis of the authenticity of
visual data. Moreover, US military services seek to integrate AI into semiautono-
mous and autonomous vehicles. One example is the Air Force’s Loyal Wingman
program, “which pairs an older-generation, uninhabited fighter jet (F-16) with an
inhabited F-35 or F-22” (Sayler, 2019, p. 13).
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3.1.3 Risks of Military AI Applications

While the US is actively pursuing a range of AI applications, it has also indicated
concerns about related ethical, legal, and safety risks. For example, the United States
was the first country to develop a national policy on autonomous weapons systems.
DoD Directive 3000.09 from 2012 (updated in 2017) restricts the use of autonomous
weapons to the application of non-lethal, non-kinetic force (U.S. Department of
Defense, 2017). However, given past statements by the US delegation at the CCW in
Geneva, it is very unlikely that the US would support an international ban on LAWS.
In this forum, the US delegation has repeatedly argued against a negotiation mandate
and even opposed the inclusion of the notion of human control in the summary
reports (Human Rights Watch, 2020).

Beyond the narrow domain of autonomous weapons systems, in its AI strategy
the DoD set itself the goal of distinguishing itself as a leader in military ethics and AI
safety. In this vein, in 2020 the DoD had already adopted a set of five ethics
principles that are supposed to guide the US’s development and deployment of
military AI. To give one example, the first of these principles specifies that “DoD
personnel will exercise appropriate levels of judgment and care, while remaining
responsible for the development, deployment, and use of AI capabilities” (U.-
S. Department of Defense, 2020). However, how these principles will eventually
shape AI development and deployment—especially as key US competitors move
toward realizing their AI ambitions –remains to be seen. Lastly, military agencies
working on AI such as DARPA have also launched programs that aim at assuring the
safety and correct functioning of AI systems (Morgan et al., 2020).

3.1.4 Summary

The previous overview has shown that the US military’s pursuit of AI is primarily
driven by a perceived threat to its longstanding military-technological edge over
competitors such as China and Russia. In order to take advantage of AI for military
applications, the US is seeking to combine military R&D efforts by organizations
like DARPA with public-private partnerships. Current investments and activities
across multiple areas of application demonstrate the resolve of the US to make AI a
focal military capability, even though it has only deployed AI in a narrow range of
cases so far. The DoD has also demonstrated its concern about AI safety and legal
and ethical risks and has launched several initiatives at the national level to address
some of these challenges.
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3.2 China

China is regarded as an emerging contender of the US in AI. In 2017, the Chinese
State Council released its AI strategy—the Next Generation Artificial Intelligence
Plan—setting itself the eye-catching objective of becoming the global leader in AI
by 2030 (Webster et al., 2017). Currently, China leads all countries in having large
datasets available required for training machine-learning algorithms, but is still
behind the US regarding hardware, talent, and the quality of research publications
and patents (Ding, 2018; Breitinger et al., 2020). The Chinese AI strategy is
primarily concerned with applications for the civilian sector, including manufactur-
ing, smart cities, and education, but also includes a section on defense suggesting
that AI be rapidly introduced as part of its national defense innovation (Webster
et al., 2017).

Chinese military AI efforts are driven by technological opportunity and strategic
considerations. The Chinese People’s Liberation Army (PLA) recognizes the poten-
tial opportunities inherent in the application of AI in the military realm. However, it
is also concerned about falling behind the US military, which it regards as a powerful
adversary (Kania, 2020). Xi Jinping has set the target for the PLA to become a
world-class military by mid-century and to finally close the capability gap with other
military powers and especially the US. Since the end of the Cold War, China has
invested significantly in military modernization and the development of asymmetric
capabilities targeting vulnerabilities of the US military. For the PLA, the introduc-
tion of AI could herald a new era of intelligentized warfare and provide China with
the historical opportunity not only to catch up with but also to leapfrog and surpass
the US (Kania, 2018).

3.2.1 Sources of Military AI

In 2020 alone, China is estimated to have spent $70 billion on AI, but the specific
amount of defense AI R&D is unknown, as no official figures exist (Acharya &
Arnold, 2019). However, China, more than any other country, blurs the line between
civilian and military resources as it uses an approach to military modernization
called civil-military fusion. Also in China, private sector actors lead in the develop-
ment of AI, and Beijing sees these commercial developments as also significant for
the military. Yet, also in China, and despite the seemingly closer link between
government and the private sector, collaboration is not without friction and does
not guarantee a seamless translation of civilian into military resources (Laskai, 2018;
Sayler, 2020).
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3.2.2 Military AI Applications

The PLA has signaled its intention to apply AI to upgrade existing weapons systems
but also to develop entirely new capabilities. Chinese leaders view AI as an
important element of its military modernization, but the military leadership has yet
to clarify its plans and priorities (Kania, 2020). However, the PLA is already
developing military AI applications across various areas, including autonomous
vehicles, command decision making, ISR, cyber, and logistics. For example, the
PLA is developing swarming Unmanned Aerial Vehicles (UAV) for ISR, commu-
nications and strike missions. It is also developing autonomous ground vehicles
including the Sharp Claw I and II, which reportedly can “autonomously conduct
reconnaissance, identify and track, and engage targets” (Morgan et al., 2020, p. 64).
The Chinese Navy is supposedly also developing autonomous submarines (Kania,
2020).

3.2.3 Risks of Military AI Applications

While China is pursuing AI for military applications, Chinese leaders have also
voiced concerns about the risks of an AI arms race with the US on multiple occasions
(Allen, 2019). In May 2019, a group of state and non-state actors released the
“Beijing AI principles” that call for cooperation in AI governance and warn against
a “malicious AI race” (BAAI, 2019). At the CCW, China called for a ban on
autonomous weapons systems in 2018. However, as was later clarified, China’s
position was limited to a ban on the use of LAWS and did not include their
development and production (Human Rights Watch, 2020). Nonetheless, China
has consented to 11 guiding, non-binding principles on LAWS that were proposed
by Germany and France in 2019. The principles affirm for example that a human
must always be responsible for the decision to use LAWS and that international
humanitarian law applies (France Diplomacy, 2019).

3.2.4 Summary

China views AI as an opportunity to move its military modernization efforts forward
and to catch up with or possibly even leapfrog the US. In order to fulfill these
objectives, China uses a strategy of civil-military fusion, exploiting the synergies of
AI developments in the civilian and military realm. While China has not officially
released a military AI strategy, the PLA is already experimenting with AI applica-
tions in various areas and has demonstrated its resolve to use it broadly in the future.
However, Chinese leaders have also shown concern about potentially dangerous
dynamics resulting from an AI arms race with the US and have recently called for a
ban on autonomous weapons. However, it is unclear whether these concerns will
actually constrain the PLA’s further pursuit of military AI.
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3.3 France

The French President Emmanuel Macron presented the French AI strategy, which is
backed by support of €1.5 billion until 2022, to the public in 2018 (Gouvernement,
2018). The overarching goal of the AI strategy is to establish France as a competitive
AI power in Europe but also globally. While an increasing number of European
countries have AI strategies, France stands out by also considering the military realm
as vital to its AI efforts (Franke, 2019). The Villani Report, a policy report that
served as the basis for France’s AI strategy, had already called for a focus on the
defense and security sector (Villani, 2019). Although France does not face an
immediate external security threat, the strategy frames the future use of AI in the
military domain as necessary to secure the country’s competitiveness and security
relative to other states. In addition to its national AI strategy, France, like the US,
also released a military AI strategy in 2019. The authors of the military AI strategy
classify France as part of “the second circle” in AI, trailing the two “superpowers”,
the US and China (Ministère des Armées, 2019, p. 7).

3.3.1 Sources of Military AI

In early 2018, the French Ministry of Defense (MoD) announced it was investing
€100 million per year between 2019 and 2025 in AI technologies, involving all of its
weapons programs (Tran, 2018). Later in 2018, France established the Defense
Innovation Agency (DIA), which has been linked to the American DARPA, to
foster and coordinate the application of new technology in the military realm. A
dedicated Defense Artificial Intelligence Coordination Unit (CCIAD), responsible
for coordinating the ministry’s activity in the area of AI, has been attached to the
DIA (Ministère des Armées, 2019). However, the Villani report had already also
emphasized the need to exploit synergies between AI developments in the military
and civilian realm (Villani, 2019). The recently established “Innovation Défense
Lab” by the French MoD aims, among other objectives, to speed up the adoption of
technology coming from the private sector (Ministère des Armées, 2020).

3.3.2 Areas of Military AI Applications

While the French military is still in the initial stages of AI development and
deployment, France is already part of the development of different “big-ticket”
systems that will involve AI technologies. The most developed project, so far, is
Dassault’s unmanned combat aerial vehicle (UCAV) nEUROn that, apart from
France, also involves Greece, Italy, Spain, Sweden, and Switzerland. A project
that is still in the early stages is the Future Combat Air System (FCAS), a joint
initiative by France, Germany, and Spain, with Airbus and Dassault leading the
development. Eventually, FCAS should enable “teaming between a manned fighter



and swarms of autonomous drones” (Franke, 2019, p. 16). Another project that is
currently under development is dubbed Artemis and has the objective of providing
the French Defense Procurement Agency with a sovereign infrastructure for the
storage of big data and data management (Franke, 2019).
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3.3.3 Risks of Military AI Applications

On several occasions, French decision-makers have voiced concern about the
development and deployment of LAWS. French defense minister Florence Parly
(2019) has stated that France had no interest in developing “killer robots” but has no
national policy on LAWS in place yet. Together with Germany, France has pro-
moted the adoption of 11 guiding principles on LAWS, the most significant outcome
of the UN deliberations to date (France Diplomacy, 2019). Beyond the area of
LAWS, it is noteworthy that in 2019 the French MoD set up a panel on the ethical
implications of military AI applications (Parly, 2019). However, so far little is
known about the work of the board, and its influence on France’s decisions
concerning the use of AI in the military realm remains to be seen.

3.3.4 Summary

France is certainly one of the European countries with the most advanced thinking
on military AI applications and their potential implications. The French MoD is
promoting experimentation with AI technologies across different domains and has
underscored this plan with substantial financial resources. Yet, French leaders are
keenly aware of the leading role of the private sector in AI R&D and the necessity to
seek closer collaboration. Currently, France is already involved in the development
with traditional and some non-traditional defense contractors of several major
weapon systems and data management systems that feature AI components. How-
ever, France also has actively engaged in discussions of the risks of military AI
applications at the UN and national level and has launched first initiatives to address
legal and ethical challenges.

3.4 Israel

Israel is already regarded as one of the world’s leading high-tech countries and,
similarly to France, is also striving to position itself among the top five countries in
AI. Currently, the government is working on the implementation of a five-year
national AI program with a budget of $1.55 billion (Orbach, 2020). Notably, the
National Security Council and the Directorate of Defense R&D of the Israeli MoD
have been closely involved in a working group on AI that was set up at the request of
former Prime Minister Benjamin Netanyahu (Berkovitz, 2019).
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Israel presents a special case because its army, the Israel Defense Forces (IDF), is
well-known for always being on the cutting edge of high-tech and is regarded as the
cradle of Israeli tech talent and the startup sector. Indeed, the IDF is often given
credit for the global success of the Israeli high-tech ecosystem. The IDF’s proclivity
to develop and adopt novel technologies is closely linked to Israel’s unique security
situation in the Middle East and its frequent involvement in border disputes and wars
(Swed & Butler, 2015). Due to Israel’s security situation and the IDF’s penchant for
high-technology, it can be expected that Israel’s military use of AI will increase
rapidly in the near future.

3.4.1 Sources of Military AI

The IDF has already set up the so-called “Sigma branch” within its C4i technical
unit, with the “purpose to develop, research, and implement the latest in artificial
intelligence and advanced software research in order to keep the IDF up to date”
(Israel Defense Forces, 2017). However, because of the close connection between
the military and civilian sphere due to, for example, men and women completing
compulsory military service, the IDF regularly collaborates with commercial com-
panies and researchers on technology projects. Thus, in contrast to other countries,
where militaries are just beginning to foster closer collaboration with the private
sector in the development of military AI applications, the IDF can draw on years of
experience with public-private high-tech partnerships.

3.4.2 Military AI Applications

Against this background, it comes as no surprise that Israel is already using and
developing military AI applications in various areas, including but not limited to
autonomous vehicles, ISR and targeting. At present, Israel already has a range of
weapons with varying degrees of autonomy in the arsenal. One interesting example
is the Harop (or Harpy 2) loitering munition—advertised by its developer Israel
Aerospace Industries as an “all-weather autonomous weapon” –an UAV that can
stay in the air for a considerable amount of time (about 6 hours) before engaging
ground targets with an explosive warhead (Israel Aerospace Industries, 2020).
Moreover, the IDF has been deploying unmanned vehicles for years, including the
Guardium unmanned ground vehicle, which patrols the border with the Palestinian-
governed Gaza Strip (Shamah, 2014). AI projects that the IDF is currently working
on include the Fire Weaver sensor-to-shooter system, developed by the defense
contractor Rafael. Fire Weaver relies on advanced computer vision technology and
AI algorithms to facilitate precision targeting for commanders and soldiers. In a
collaborative effort with startups and researchers, the IDF is also working on the
Stargate and Starlink projects, which seek to leverage AI to analyze aerial and
non-aerial images, respectively (Cohen, 2019).
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3.4.3 Risks of Military AI Applications

Despite its broad military AI efforts, Israel does not so far have a national policy
addressing the risks of military AI applications. Moreover, although Israel partici-
pates in the CCW discussion on LAWS, it has argued against a treaty or a ban on
LAWS and even asked other states to “to keep an open mind regarding the positive
capabilities of future lethal autonomous weapons systems” (Human Rights Watch,
2020). However, it has also agreed to the 11 guiding principles on LAWS as
discussed above (France Diplomacy, 2019).

3.4.4 Summary

Due to its unique security situation, Israel has a highly trained army with extensive
experience in developing high-tech programs and adopting novel technologies.
Moreover, the IDF has close ties to the civilian technology ecosystem and traditional
defense contractors in Israel that are among the most advanced in the world. This
unique state of affairs could favor Israel in developing military AI applications and
bringing them to the battlefield quickly. Israel already deploys certain AI technolo-
gies in the military realm and is expected to expand their use in the future. At the
moment there are no indications that Israel will constrain its development and
deployment of military AI capabilities on a national level or that it will support an
international legal instrument on LAWS.

4 Comparison and Discussion

At present, only a speculative and preliminary assessment and comparison of states’
emerging military AI capabilities is possible. However, some conclusions can be
drawn based on the preceding analyses. First of all, despite AI’s still emerging
character and many remaining uncertainties regarding its potential, states are already
showing a significant interest in applying AI for military purposes. This interest or
even resolve to do so is reflected in strategic documents, including the US and
French military AI strategies, the amounts spent on AI for defense, and the devel-
opment of AI for military applications across several areas.

The four countries that have been assessed, independently of their size and
geographic location, have in common that they view synergies between the com-
mercial and military sector as critical to achieving their AI objectives. While some
countries like the US and France may face more hurdles than China and Israel in
establishing partnerships with private companies, they all face challenges in systems
integration and developing AI applications specifically for military purposes.

In a few cases, systems featuring AI are already being deployed by militaries. In
most cases, the development is still underway. Thus, at this point it can primarily be



concluded that the countries reviewed in this chapter intend to apply AI across a
wide range of areas including logistics and training, cyber and information opera-
tions, ISR, and (semi)autonomous vehicles, as well as command and control.
Whether states will be able to transform AI into truly transformative capabilities
on the battlefield remains to be seen. However, while the four countries all face a
unique strategic environment and the drivers for the deployment of military AI
differ, they all share the perception that AI could potentially bring large military
gains and that as a consequence they cannot risk falling behind.
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The countries assessed in this chapter differ significantly with regard to how they
approach the manifold risks of AI applications in the military. AI safety and ethics
feature prominently in the US military AI strategy and France also recognizes these
challenges and has started to address them. However, it is premature to say whether
and how efforts like the US’s AI defense principles or the French ethics panel will
limit the development or use of military AI. While Israel has not yet visibly
addressed the risks arising from military AI applications, China’s position is more
ambiguous. While Chinese leaders have demonstrated their concern regarding a
potential AI arms race and the deployment of LAWS, it is difficult to decipher the
country’s intentions when it comes to regulation.

This chapter has made an initial attempt at reviewing and comparing the emerging
military AI capabilities of four different countries. Further developments in this area
should be closely monitored due to the great promise but also perils of military
AI. However, the focus of the chapter has been on a small number of states that
already have relatively powerful civilian AI industries and military capabilities. It is
not yet clear how the technological lead the commercial AI sector has over its
military counterpart will influence proliferation (Horowitz, 2018). Due to its com-
mercial availability, less technologically and militarily advanced states could also
develop military AI capabilities and bolster their relative position. AI applications in
the military could also strengthen smaller states in particular because they have a
smaller armies. At this point, it is too early to answer these questions, but they
remain important topics for future research.
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Artificial Intelligence as an Arms
Control Tool: Opportunities and Challenges

Niklas Schörnig

Abstract In arms control, verification is the essential mechanism that ensures
compliance with a treaty or regulation. However, verification is not always an easy
task, especially when the contracting parties are suspicious of each other. This text
shows in a systematic way how AI can promote verification in the future and
presents several projects currently in different stages of development. Starting with
how AI-aided translation and analysis of text can support the work of inspectors, the
chapter continues to look at the analysis of graphical data, other sensory data, and the
possibilities to include multimodal data into the analysis. Many of the projects
presented have already passed the proof-of-concept phase and could be deployed
in the next few years. However, the text emphasizes the need to use AI only in a team
with human inspectors and it calls for more collaboration between AI experts and
arms control experts to fully exploit the potential that AI offers for verification.

1 Introduction

Technology and intelligence have always played an important role in and advanced
the field of modern arms control (Jasani & Barnaby, 1984), e.g. satellites, surveil-
lance aircraft or improved sensor equipment for detecting traces of radiation or
chemical agents. More recent technologies, which have also come to be known
under the sometimes misleading heading “emerging technologies”—especially
drones or other uncrewed vehicles—are also in the process of enhancing verification.
Uncrewed surface vehicles to “help IAEA inspectors verify the presence of nuclear
material stored underwater” (Silva & Klingenboeck, 2019) or drones for environ-
mental monitoring are straightforward applications of emerging technologies for
arms control purposes and first trials have demonstrated the usefulness of the
systems. The most promising, yet significantly more difficult application will be to
make artificial intelligence (AI) in general and machine learning (ML) in particular
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useful in arms control. The fact that many projects have presented proof of general
concepts over the last few years (see examples below) and that some international
organizations have been pursuing the use of machine learning to assist human
inspectors and analysts goes hand in hand with the overall progress which has
been made in the realm of machine learning. However, the idea of using algorithms
for arms control is not new. A SIPRI volume on Arms and Artificial Intelligence
(Din, 1987) dedicates a whole section (Part IV) to “Applications [of AI] in arms
control analysis.” While the AI described essentially amounted to deterministic
expert systems, as machine learning based on neural networks as we know it today
had just been developed and was too computationally intensive for the available
computing power at that time, the book still offers interesting insights. One of them
is that arms control can benefit from the implementation of AI. This is as true today
as it was in 1987. The key difference, however, is that significant advantages in ML,
paired with the ever-increasing computing power of modern microchips, has led to a
situation where the application of AI in arms control has left the field of mere theory.
We are at the beginning of an AI revolution and arms control is one field where AI
experts can run into technical challenges while promoting a worthwhile cause at the
same time. The aim of this chapter is to build a bridge between AI experts and arms
control specialists.
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The text starts by reviewing the fundamental ideas in arms control and verifica-
tion. Since most readers from the arms control community will be familiar with these
ideas, the section is primarily intended for AI experts wishing to understand the
theoretical and conceptual background of arms control. The next section presents
several ongoing projects. Some of the examples of how AI is used for arms control
purposes can be found in the various chapters of this volume, often in greater detail.
The aim of this chapter is to more systematically classify the examples of
AI-enhanced arms control based on the data used in the case examples. The
categorization used by Gastelum et al. (2018) is adopted, but another category, the
analysis of sensor data other than text or images, is added. After presenting success-
ful cases, section four looks at the problems and pitfalls that are sometimes described
by analysts or sometimes ignored despite their being in plain sight.

The final section returns to the fundamental question regarding arms control:
Where will AI help to foster arms control, where do the limits lie, and what is
politically necessary to make more use of AI in arms control.
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2 Theory of Arms Control, Disarmament
and Non-proliferation

2.1 Arms Control, Disarmament and Non-proliferation:
Basic Concepts

When it comes to arms control, several key concepts must first be clarified. First,
there is a significant difference between arms control and disarmament. Disarma-
ment always entails a notion of actually reducing armament (disarmament as an
ongoing process) or even achieving a state of zero armament, meaning that full
disarmament (disarmament as a final status) and the banning of a certain weapon
(Carter, 1989, p. 4). Arms control, by contrast, can be understood in a broader and
less strict way, including, for example, agreeing on certain ceilings for a particular
weapon system or even controlled armament, that is to say, a mutually agreed upon
limitation of build-up rates. Proponents of disarmament see a direct connection
between the number of weapon systems and the potential for conflict, arguing that
less is always better (Müller & Schörnig, 2006, pp. 124–126; see Müller, 2017, p. 11
for an English version). From this perspective, disarmament is an end in itself. The
most important aim of arms control is avoiding (nuclear) war in a conflictual
international environment (Schelling & Halperin, 1961, p. 1). But instead of com-
plete disarmament, arms controllers aim for stability based on a military balance as
the best protection against war (Schelling & Halperin, 1961, p. 1; Carter, 1989, p. 4).
Agreeing on a long-term balance of power, for example, by agreeing on mutual rates
of weapons build-up, would be seen as better than unilateral but destabilizing
disarmament, at least in a competitive environment. But arms control also aims to
limit the costs of armament (e.g., through a freeze without an actual reduction) and
the limitation of destruction in war (Schelling & Halperin, 1961, p. 1). Some authors
also stress the importance of confidence and security building and other
transparency-creating measures in the context of arms control, as these measures
usually help to stabilize relations between rational adversaries (Altmann, 2019).

Non-proliferation, to add the third relevant concept, focuses on a distinction
between haves and have-nots, where those states already in possession of a particular
weapon system refuse to give it to states not yet in possession, thus limiting its
proliferation. The concept historically refers to the nuclear realm (Goldblat, 1982,
p. 45). A related, yet less strict concept is that of export controls, where those in
possession of a certain weapon system or militarily usable technology choose not to
sell to every potential buyer, or only export subject to certain restrictions (for the case
of drones, for example, see (Schörnig, 2017)) such as the recipient state not being
allowed to pass on or sell the system to a third party or limiting the capabilities of the
system.

In all cases, however, one of the most pressing questions is whether states, or in
the realm of non-

proliferation and export control, both state and non-state actors adhere to an
agreement. Especially when the security of a state is at stake, trust in and the



reliability of an agreement is essential and assurance that all members will comply
with an arms control agreement and no one will cheat is the “state’s most serious
concern” (Karkoszka, 1977, p. 8). As a result, verification is needed to demonstrate
compliant behavior.
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2.2 Verification

Verification is understood as the essential mechanism that ensures compliance with a
treaty. The often-quoted tagline is an old Russian proverb, frequently used by
Ronald Reagan: “Trust, but verify!” And “there is a consensus that verification
needs to be built into an [international arms control] agreement” (Keir & Persbo,
2020, p. 16)—with the Biological Weapons Convention being the exception (see the
text by Filippa Lentzos in this volume). In practice, verification can, for example,
determine whether a weapon system’s treaty-defined ceiling, for example the num-
ber of missiles in an installation or of tanks in a specific region, is in compliance with
the agreement. Or verification can check whether a specific factory is showing traces
of the production of forbidden chemicals or the enrichment of uranium.

However, in a way the term “verification” is misleading as it suggests that
compliant behavior could in fact be “verified” or “confirmed”, ruling out the
possibility of violations of an agreement, or “cheating.” However, this would
overburden verification as no arms control treaty is safe against skillful and
resource-intensive cheating. The aims of verification or so-called safeguard mea-
sures are therefore less ambitious. They include, among others, first, to “ensure that
violations are not likely to remain covered,” (Gayler, 1986, p. 5), or concealed and
deter the potential violator as a result (Goldblat, 1982, p. 90). Second, to raise the
costs of treaty violations significantly, and thus reducing incentives to cheat; third, to
create such a dense net of verification measures as an early warning mechanism that
actual violations of a treaty are detected before their impact on security becomes
severe, thus leaving enough options for reacting (Gayler, 1986, p. 4), and fourth,
although there may be residual uncertainties, to increase trust and confidence
between adversaries over time when no violations are detected (Gayler, 1986, p. 4;
Goldblat, 1982, p. 90). Verification comes in many forms and has highly technical
aspects. It starts with unilateral measures based on so-called national technical
means (NTM), such as satellite observation of relevant installations or intelligence
gathering and analysis (Gayler, 1986, p. 4). Thus, even if the treaty does not provide
a specifically designed verification regime, states can monitor their peers’ behavior
and impose consequences when necessary. In some cases, treaties explicitly mention
national technical means as a verification mechanism and prohibit actions which
interfere with verification, such as concealing missile sites. The 1972 Strategic Arms
Limitations Talks/Treaty (SALT) between the United States and the Soviet Union
are a case in point here (Goldblat, 1982, pp. 90–91).

More formalized forms of verification include, among others, the exchange of
protocols, numbers and otherwise relevant material, the monitoring of military drills



and maneuvers, routine inspections of agreed locations or even surprise or “chal-
lenge” inspections with only limited warning time.1 In some cases, the verification is
conducted by experts from the parties to a treaty, in others information is gathered by
independent inspectors on-site or via technical means run by an international agency
such as the International Atomic Energy Agency (IAEA) or the Comprehensive
Nuclear-Test-Ban Treaty Organization (CTBTO).
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It is obvious that verification walks a tightrope. If the verification procedure is too
lax, it is considered to have limited value, if any. If it is too intrusive, the inspecting
country may gain additional sensitive information not related to the original intent of
the verification mechanism. It is no wonder that the accusation that verification
measures could also be used for espionage—or even that they are a legalized form of
spying—has accompanied the debate for decades and can still poison treaties that are
otherwise working well. The unsubstantiated accusation in the debate about the US
withdrawal from the Open Skies Treaty in 2019/2020 is a case in point here.2

As mentioned above, advocates stress that successful verification of certain facts,
for example the verification of a certain number of a specific weapon system at a
specific place as reported, increases confidence in the material received, especially
after several rounds of iteration. Practice has shown that in addition to this there is
yet another layer: the personal interactions between inspectors from different,
possibly even hostile states may lead to personal relations and trust, and thus provide
trustworthy contact persons in a crisis with whom tensions can be de-escalated on
both sides.3

And finally, verification also helps states wrongly accused of cheating prove their
compliance with treaties (Lück, 2019, p. 16), at least to a certain extent, as very
paranoid treaty parties (or factions within a treaty party) can always assume the
existence of a secret facility not detected by verification measures, or imagine some
other form of cheating.

2.3 AI-Enhanced Verification from a Theoretical Perspective

When it comes to the practical implementation of verification measures, the process
of verification usually cycles through three phases: first, the gathering of informa-
tion; second, reviewing the information; and third, determining compliance based on
the information gathered and reviewed (Keir & Persbo, 2020, p. 17). It is obvious
that AI can be of huge help in this process, either by adding deeper layers of analysis
to existing data or by tapping into new sources of information. In the case of

1Excellent overviews by Karkoszka (1977, pp. 15–37) or Jasani and Barnaby (1984) are still
pertinent today.
2https://www.cotton.senate.gov/news/press-releases/cotton-cruz-introduce-resolution-calling-for-
withdrawal-of-united-states-from-open-skies-treaty, retrieved 18 February, 2022.
3Personal conversation with people involved in actual inspection measures (November 2018).

https://www.cotton.senate.gov/news/press-releases/cotton-cruz-introduce-resolution-calling-for-withdrawal-of-united-states-from-open-skies-treaty
https://www.cotton.senate.gov/news/press-releases/cotton-cruz-introduce-resolution-calling-for-withdrawal-of-united-states-from-open-skies-treaty


treaty-based verification measures, the role of AI may be limited, as the pool of
sources is often defined in the treaty. This might not be problematic in other forms of
verification, either when verification measures are enforced upon an entity (via a UN
Council resolution), when a state monitors national companies’ and corporations’
behavior (as in the case of export controls) or when civilian entities, such as NGOs or
scientists, offer a form of societal verification4 based on the use of publicly available
sources to monitor compliance or non-compliance of state actors.
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But even within existing verification regimes, it is obvious that arms control in
general and verification in particular involve tasks where a great deal of material has
to be assessed while paying attention to many details at the same time. In many
regimes, verification measures still go back to the time when the regime was created,
such as in the case of the Chemical Weapon Convention in the early 1990s, and there
is a general need to update the instruments: “It is essential to consider new technol-
ogies in order to guarantee efficient verification of non-proliferation and disarma-
ment treaty compliance for the future” (Schulze et al., 2020, p. 188). However,
formal mechanisms for adapting a treaty or its protocols are already included in
several verification regimes.

While simpler deterministic AI algorithms or expert systems can be helpful in
assisting arms-control efforts by helping experts or inspectors to not lose oversight in
a complex situation, machine learning can—as in other domains as well—once again
significantly enhance the effectiveness and reliability of analyses. It is obvious that
AI cannot be a help when it comes to fostering interpersonal relations. But it can be a
significant help in the technical analysis of data. Only time will tell whether it is
“merely” an improvement or the much-vaunted gamechanger. But it is certain that it
will be a help. “Broadly, machine learning is the art of teaching a machine to make
predictions based on past observations” (Gastelum & Shead, 2018, p. 42). A major
aspect of verification efforts involves predicting the chances of a significant violation
by another actor, finding mismatches or contradictions in the data presented and the
material obtained. This is what AI is particularly good at: “Machine learning and AI
can identify which data is most important, identify patterns and anomalies and
predict response to certain actions” (Williams, 2020, p. 9). How this theoretical
reflection fits into existing verification practices, however, will be debated at a later
point in this chapter.

3 AI for Enhancing Arms Control and Verification

3.1 Translation and Analysis of Text

The first and most obvious hurdle when inspecting a huge number of countries is that
the number of experts with adequate knowledge of the language of each country is

4See for example Gastelum (2020) for the concept.



limited. For example, while many Western arms control experts tried to acquire at
least some proficiency in Russian during and immediately after the Cold War, arms
control experts who can communicate fluently about very technical matters in
Chinese are probably rare, not to mention those who speak Farsi or Korean.
AI-supported translation services such as Google Translate or DeepL are still unable
to achieve what specifically trained human translators are able to when it comes to
complex or nuanced text. Nevertheless, these translation services have improved
significantly in recent years. In many cases many translations have reached a
satisfactory level of accuracy, depending on what is needed.Making it possible for
technical arms control experts to understand open-source material such as newspaper
articles, government statements, social media content or other material in a language
they are not familiar with is a valuable asset which should not be underestimated.
Institutions like DARPA, the US Defense Advanced Research Projects Agency,
have identified AI-supported language translation as a very important field in which
to invest. Its Broad Operational Language Translation (BOLT) program, started as
early as 2011, aimed at “enabling communication with non-English-speaking
populations and identifying important information in foreign-language sources.”5

While DARPA focused on the ability of US soldiers to interact with local
populations, the idea that inspectors should have the ability to communicate without
having to rely on interpreters also seems to have merits. Other known DARPA
programs aimed at the translation of lesser-known languages (Translate Any Lan-
guage6) or the automated translation of foreign language text into English, include a
project called “Multilingual Automatic Document Classification, Analysis and
Translation” (MADCAT),7 originally designed to translate captured material found
in enemy hideouts. It is obvious that inspectors could also benefit immensely from an
app translating photographed text in operational situations.8 But communication is
not a one-way street. In addition to using translation tools to understand source
material, important players such as international organizations could use AI to
translate their publications and reports into more than the usual number of languages,
thus raising awareness and increasing outreach. While publications would definitely
need to be brushed up by professional linguists, the workload would be significantly
reduced. AI can also help to make material accessible to begin with: Extracting
coherent and processable text from PDFs or scans seems to be rather hard when the
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5https://www.darpa.mil/program/broad-operational-language-translation, retrieved 18 February
2022.
6https://slator.com/technology/darpa-doles-out-millions-to-academia-and-vendors-to-translate-
any-language-by-2019/, retrieved 18 February, 2022.
7https://www.darpa.mil/program/multilingual-automatic-document-classification-analysis-and-
translation, retrieved 18 February, 2022.
8According to DARPA, MADCAT has “developed optical character recognition and machine
translation capabilities for 11 languages: Arabic, Chinese, Dari, Farsi, Hindi, Pashto, Spanish,
Russian, Thai, Urdu and Korean”. https://www.darpa.mil/program/multilingual-automatic-docu
ment-classification-analysis-and-translation, retrieved February 18, 2022.

https://www.darpa.mil/program/broad-operational-language-translation
https://slator.com/technology/darpa-doles-out-millions-to-academia-and-vendors-to-translate-any-language-by-2019/
https://slator.com/technology/darpa-doles-out-millions-to-academia-and-vendors-to-translate-any-language-by-2019/
https://www.darpa.mil/program/multilingual-automatic-document-classification-analysis-and-translation
https://www.darpa.mil/program/multilingual-automatic-document-classification-analysis-and-translation
https://www.darpa.mil/program/multilingual-automatic-document-classification-analysis-and-translation
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text flow is broken by the layout, for example when in a two- or three-column
format, and new algorithms would be helpful here (Bast & Korzen, 2017).
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AI can also help to analyze text or visualize existing data in new forms, and this
makes it easier for humans to grasp specific interconnections or important aspects.
Versino et al. (2018, p. 10) remind us that officials “often . . . lack the analytic and
visualization tools to glean meaningful, actionable data from very large datasets.” In
the realm of export controls, for example, specifically trained algorithms could link
information from different sources of dual-use material to a specific location. While
each individual delivery would not raise an alarm, assessing them together over time
and space might.

Advanced search engines use “faceted search” to narrow down unspecific inqui-
ries leading to too many results by including additional specifications suggested by
the engine to fit the user’s needs. AI can help individual users by analyzing and
taking into account their search history and connecting specific interests or drawing
attention to links to new aspects the user did not originally notice.9 “Fuzzy search” is
also an important aspect, by means of which AI will help arms controllers. Fuzzy
search looks at similarities, rather than exact matches (Bast & Celikik, 2010),
considering results for, say, a person’s name which are similar enough to be of
interest, such as displaying results like “Schörnig,” “Schornig” or “Schörning” after
using the search term “Schörnig” when other aspects (location, topics, etc.) also
seem to fit. On the other hand, the same fuzzy search might also exclude exact
matches when other aspects seem to indicate that the result is not appropriate (e.g., in
the case of a “Michael Smith”). More advanced systems might even match quite
different spellings based on their similar pronunciation.10 Fuzzy search can help
arms controllers to assess material where typographical errors and/or different
notations occur (e.g., translating from one alphabet into another)—carried out across
different databases. This might be of special interest in the area of non-proliferation,
where thousands of export-related documents which are prone to smaller mistakes
and deviations are generated every day, making the task of finding relevant links in
the sheer volume of documents (see Steward et al., 2018) even harder, but other
applications, such as the analysis of newspaper or other open-source material, also
come to mind.

3.2 Analysis of Graphical Data

Graphical data plays an important role in arms control and verification. Checking
satellite images for changes in the landscape, in the size of an installation or in the
number of weapon systems visible on a base or in a certain area is one of the most

9For a good overview of different search algorithms, see Steward et al. (2018, p. 24f).
10https://medium.com/data-science-in-your-pocket/phonetics-based-fuzzy-string-matching-algo
rithms-8399aea04718, retrieved February 18, 2022.

https://medium.com/data-science-in-your-pocket/phonetics-based-fuzzy-string-matching-algorithms-8399aea04718
https://medium.com/data-science-in-your-pocket/phonetics-based-fuzzy-string-matching-algorithms-8399aea04718


common methods of unilateral verification using a national technical means. As
Jacques Baute, Director of Safeguards Information Management at the IAEA
explains: “The analysis of satellite images provides an effective means to assess
the nature, extent, and technical connections of nuclear sites” and adds that “the
prospect of contribution from machine learning remains promising” (Baute, 2018,
p. 6). In addition, safeguards regarding the non-proliferation of nuclear material
entail, among other things, constant video surveillance of critical locations to detect
and deter materials diversion at a specific facility. Going through a large number of
pictures to check for slight differences or identifying a certain weapon system on a
rather blocky or blurred picture is a demanding task which requires intense concen-
tration. When it comes to video feeds, large parts, however, are “static” and “events
of interest are infrequent,” as a workshop report of the International Atomic Energy
Agency describes (IAEA, 2020, p. 10). Having to watch all footage and set the
noteworthy frames apart from the uninteresting is a demanding yet boring job, or a
“tedious and labor-intensive task” as the IAEA describes (IAEA, 2020, p. 10). In
addition, the number of available satellites and the availability of cheap, yet powerful
digital cameras has increased the sheer number of sources significantly. It is obvious
that AI can be a significant help here, as the civilian application of machine learning
for picture analysis and object classification has made tremendous advances in recent
years. As Gastelum and Shead argue: “Some of the best-known applications of
neural networks are for image classification tasks, in which the output features of a
network encode a fixed set of labels and the network predicts which label(s) apply to
an input image” (Gastelum & Shead, 2018, p. 42). Google Vision is a prime example
of an Application Programming Interface (API) for object recognition and “image
understanding,” where users can upload photos to identify objects, a person’s mood
or text, based on a pre-trained machine learning model or the users’ custom
models.11 Inspectors could, for example, use this technology to identify export-
controlled items by comparing a picture of potential contraband with a database of
prohibited goods, obtain understanding of the function of a certain object based on
comparable photos (Steward et al., 2018, p. 27f) or receive information indicating
where or when a picture was taken.12 A very similar project was presented by Jamie
Withorne (2020), where a machine learning model was trained to identify restricted
dual-use goods for non-proliferation purposes. Finally, examples of the concrete use
of AI-based image analysis for arms control issues in a broader sense have included
identification of nuclear facilities in operation based on their cooling towers and the
emission of steam plumes based on Flickr images (Gastelum & Shead, 2018),
distinguishing of unproblematic copper mills from proliferation-relevant uranium
mills (Sundaresan et al., 2017) or identification of smuggled small arms or other

Artificial Intelligence as an Arms Control Tool: Opportunities and Challenges 65

11https://cloud.google.com/vision, retrieved January 19, 2021. Unfortunately, Google has since
removed the option to try out the technology without registering.
12In one sample picture of my mother visiting Berlin in the 1960s her clothes were correctly, yet
somewhat vaguely identified as “vintage” and “retro style”.

https://cloud.google.com/vision


prohibited devices on cluttered pictures of x-rayed shipping containers entering or
leaving port (Rogers et al., 2017).
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Another important aspect, as mentioned above, is the identification of changes in
pictures taken at different points in time. Has a specific installation been expanded?
Are there indications of freshly moved soil? Has a new weapon system such as a
combat drone been transferred to a specific facility?

The idea of using commercial satellites to support existing verification regimes
has been debated for some time now.13 Using AI and ML to support the analysis
seems obvious. Rutkowski et al. (2018), for example, developed an algorithm
analyzing Synthetic Aperture Radar (SAR) satellite images collected by ESA and
released via the Google Earth Engine with the explicit aim of making a case for
supporting “international verification regimes by offering a remote mechanism for
treaty verification” (Rutkowski et al., 2018, p. 48). However, algorithms used in
such cases need to “understand” the difference between human-made changes and
changes due to lightning, different weather conditions or the angle of the image.
Nonetheless, many experts are confident that these problems have already been
solved to a satisfactory degree.14

Finally, when it comes to video footage, many hours may be of no interest, and
only a fraction of the material may be of relevance. Algorithms identifying static
pictures at a higher speed than a human can when fast-forwarding (with the risk of
missing relevant sections when fast-forwarding too quickly) can flag relevant sec-
tions for human inspectors to watch more closely. The IAEA “has already been
pursuing learning-based algorithms to help automate detecting and tracking events
of interest” (IAEA, 2020, p. 10).

3.3 Analysis of Other Sensor Data

In addition to the analysis of text (spoken or written), images or film, arms control
experts often have to deal with data provided by sensors. Sensors indicating the
presence of toxic substances or the vibration caused by either an earthquake or a
nuclear-test explosion are cases in point. Depending on the data under scrutiny,
interpreting the results can be simple (reading a meter) or very challenging
(interpreting seismic data). In any case, AI can assist experts in the analysis and
interpretation of such data.

The often-cited suggestion of collecting telemetric data from drones to check for
unwanted use of autonomous behavior in weapon systems (Gubrud & Altmann,
2013; see also the text by Dahlmann in this volume) could be enhanced by

13https://vcdnp.org/emerging-satellites-for-non-proliferation-and-disarmament-verification/,
retrieved February 18, 2022.
14I received similar comments assessing this from the anonymous reviewer as well as from Thomas
Reinhold (personal communication, October 2021). See also Molinier et al. (2007).

https://vcdnp.org/emerging-satellites-for-non-proliferation-and-disarmament-verification/


AI-supported analysis to check for deviations from expected behavior not noticeable
by a human analyst. As early as 2010, Russel, Vaidya and Le Bras suggested using
machine learning to enhance Comprehensive Nuclear-Test-Ban Treaty (CTBT)
monitoring (Russel et al., 2010); see also the text by Anna Heise in this volume).
While the CTBT has not entered into force yet, it already has its own verification
organization, the CTBTO. It runs a network of more than 300 sensor stations across
the globe with complementary verification technologies, the International Monitor-
ing System (IMS),15 of which 170 are dedicated to seismic monitoring.16 All data is
collected in real time at the International Data Center (IDC) and checked, for
example, for significant seismic activity caused by a forbidden nuclear explosion,
as opposed to natural seismic activity such as an earthquake. While some
pre-selection of data was already automated by the time of writing, Russell et al.
(2010, p. 32) argued that “incorporating machine learning methods into the IDC
framework could improve the detection and localization of low-magnitude events,
provide more confidence in the final output, and reduce the load of the human
analyst.” In addition, algorithms could also support inspectors. After the CTBT
enters into force, the CTBTO can send an inspection team into an area where a
potential test occurred, setting up seismic equipment to detect faint aftershocks
(Altmann, 2020, p. 237), which can be masked by disturbances (Altmann, 2020,
p. 239). Jürgen Altmann, however, goes a significant step further and argues that
acoustic and seismic sensors could be used for early warning activities such as
monitoring movement of military vehicles in peacekeeping operations, at cease-fire
lines, or in weapon-free zones (Altmann, 2020, pp. 240–241). This idea actually
goes back three decades when the idea of classifying heavy land vehicles by sound
and vibration was developed and tested in early and later experiments (Hochmuth
et al., 2001; Altmann et al., 2002). Obviously, modern machine learning algorithms
could enhance detection significantly, helping to detect real dangers and separate
them from false alarms or false negatives (Lück, 2019, p. 20f). Altmann (2020,
p. 241) also proposes detecting launches of intercontinental ballistic missiles via
pre-installed geophones [or: seismic sensors] around known launch sites, or for
improved early warning by signaling additional confirmation for true negatives.
Given the extreme loudness of a missile launch, however, it is likely that a launch
would be detected by simple measurement, so that algorithmic evaluation of the
signal does not seem to be so important.

Artificial Intelligence as an Arms Control Tool: Opportunities and Challenges 67

15https://www.ctbto.org/verification-regime/background/overview-of-the-verification-regime/,
retrieved 18 February, 2022.
16https://www.ctbto.org/verification-regime/monitoring-technologies-how-they-work/seismic-mon
itoring/, retrieved February 18, 2022.
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3.4 Multimodal Data and Other Uses

All examples described above focus on one particular set or class of data. Inferences
are drawn, for example, either based on the analysis of text or specific images or
other very specific sensor data. However, analysis based on multimodal data—that
is, combining data based on text, images and video—brings together different data
but looks at it with the same aim in mind. Feldman et al. present a “large-scale
multimodal retrieval system to help analysts triage and search open source science,
technology, and new data for indicators of nuclear proliferation capabilities and
activities” (Feldman et al., 2018, p. 68). It is certainly true that this approach
promises yet another increase in performance when information from very different
sources, all addressing one particular research question, is considered. Brase,
McKinzie and Zucca (2020, p. 300) conclude that “large scale integrated data
models will allow analysts to answer state-specific questions and better track the
evolution of potential proliferation activities.” However, not only do potential
problems multiply (see below) but, given that many single-source approaches are
still in their infancy, reliable working analyses based on multimodal data analysis
should only be expected in the medium or long term rather than the short term.

4 Limitations and Challenges

Many of the examples described in the last section (and other texts in this volume)
have not been applied in practice, but describe options, possibilities, proofs of
concepts or first-stage prototypes. As in civilian industry, which promised, for
example, that self-driving cars would be on the market years ago, the devil is often
in the detail. One of the major problems AI faces when applied in the realm of arms
control and verification is that the events AI has to be trained for are very rare but
have very serious consequences. Knowledge and expertise from autonomous driving
can indeed be incorporated in situations involving unexpected and rare events with
very serious consequences (IAEA, 2020, p. 11). While the automobile industry is
lagging behind expectations, as full automation in a dynamic and often unstructured
environment (driving) has proven to be more difficult than expected, many use cases
in the arms control realm refer to a structured and clearly delineated setting. In
addition, as described in the theory section, verification does not aim at perfect
security, but at least for sufficient security to avoid unpleasant surprises. However,
most AI algorithms would strive to detect a “first occurrence”—the first significant
violation of an agreement or the first significant deviation from the norm—as far as
we know. Obvious and clear-cut cases of treaty violations are rare events. This is
reflected in the datasets based on which the algorithms will or would be trained.
Would an AI distinguish a dog from a cat if it had only been trained with a large
number of pictures of dogs and only a few of cats? In any case, experts agree that
when it comes to machine learning, the “key challenge in classification relates to the



training of algorithm[s]” (Steward et al., 2018, p. 26). Training arms control algo-
rithms would be no exception.
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Some experts state that over 90% of their time is spent preparing and managing
data to make it useful for their algorithms (IAEA, 2020, p. 11). While many datasets
are publicly available, including labeled imaging sets, there is still the question of
how much data is enough to reliably train an algorithm. In many of the test cases
described above the experts used from a few hundred to a few thousand examples to
train their concepts. Would that be enough to bet a country’s security on, when other
experts claim that learning algorithms need “millions of samples”17 for them to
perform properly? And will there be enough publicly available data in the future with
which to train algorithms? Some argue, for example, that Western states are at a
disadvantage due to privacy concerns compared with other, more relaxed actors.
While data to sharpen algorithms seems endless at first glance, Rose Gottenmeller
(2020, p. vi) reminds us that we “cannot assume that information will always be so
readily available” or that it will be reliable enough to be used. The argument has a
positive aspect, however: those datasets collected and labeled by experts from
international organizations such as the IAEA, the CTBTO or the Organisation for
the Prohibition of Chemical Weapons (OPCW) should enjoy a high level of trust and
reliability issues should be minimal given that multinational and impartial teams are
involved.

A final problem is related to the “black box” character of self-learning AI. If, for
example, an AI signals non-compliance which is totally contrary to the impression of
seasoned inspectors, the reliability of the AI might be questioned for technical as
well as for political reasons.

States would not only be reluctant to base their arms control decisions on
unknown algorithms or databases but might fear new options capable of hiding
manipulation and cheating in a tremendous amount of data. Can data sets or
algorithms perhaps be manipulated in such a way that an AI learns something that
in the end gives one of the actors a big advantage?

AI has many options for enhancing verification and detecting cheating, but also
raises the verification problem to a higher level: Who will verify that the AI can be
trusted (see the text by Maaike Verbruggen in this volume)? This question raises,
first, the issue of the importance of “explainable AI” in the context of bi- or
multilateral arms control and the related necessity of certification of training data
by all participating states (Boulanin et al., 2020, p. 5). Second, it suggests that for the
foreseeable future AI will at best assist arms controllers and verification experts
rather than replace them. AI will only be implemented where mistakes and errors
will do no significant harm: The IAEA, for example, has “been pursuing learning-
based algorithms to help automate detecting and tracking events of interest to free up
inspector time for more complex tasks” (IAEA, 2020, p. 10).

17https://www.llnl.gov/news/researchers-developing-deep-learning-system-advance-nuclear-non
proliferation-analysis, retrieved January 15, 2020.

https://www.opcw.org/
https://www.opcw.org/
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The final problem is over-enthusiasm. Many experts are thrilled by what their AI
prototypes can achieve and many offer deep insights into areas that were notoriously
hard to look into in the past. However, as debated before, verification always walks a
fine line between transparency and espionage and there are deliberate limitations that
are accepted by everyone involved—the Open Skies Treaty, for example, which
limits the resolution of observation photos. It is important to respect the limits of
verification vis-à-vis intrusion. Experts must therefore always ask whether their AI is
really helping enhance trust, is revealing secrets, or is even offering the possibility of
misuse for spying.

5 Conclusion

As the significant increase in the publication of machine learning-related approaches
to arms control problems show, reliability and practicability has reached a level
where initial practical tests seem viable. At the lowest level, advances in
AI-enhanced translation software make it easier for arms control experts to access
written material or interact with entities being inspected. In addition, AI offers the
chance to significantly enhance arms control measures as more data can be analyzed
in a shorter time, freeing resources for the specifically tricky cases where human
intelligence is needed. The fact that international organizations like the IAEA or the
CTBTO have been holding workshops on the issue for some years now, or at least
fostered debate, shows that ML-based AI will be of tremendous importance in the
field in the future. It is no wonder that AI is either starting to be used exactly where
the data situation is extensive and reliable (i.e., international organizations) or where
data is open or easy to obtain and abundant, the realm of export controls and
non-proliferation. As there are more and more toolkits available, it is becoming
possible to develop and train AI models without much background knowledge,
potentially leading to a boom of civil society arms controllers in the future—a
societal Arms Control 2.0. As debated above, however, verification always has an
underlying political dimension, and not every violation against the text of a treaty
must be a violation of its spirit. False positives might lead to severe political
disruptions. At least now, therefore, there still seems to be a continuous need for
trained human inspectors and the “appropriate combination of algorithm-human
fusion will be the subject of much analyst management effort in the coming years”
(Steward et al., 2018, p. 23). A first important step would be to provide arms control
experts with more fundamental information on artificial intelligence to facilitate
communication. The cases debated in this text show that if arms controllers and
AI experts work together, they can significantly improve verification and compli-
ance, thereby taking the wind out of the sails of those who have written off verifiable
arms control as an issue.
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Verifying the Prohibition of Chemical
Weapons in a Digitalized World

Alexander Kelle and Jonathan E. Forman

Abstract Kelle and Forman provide an analysis of the verification provisions of the
Chemical Weapons Convention (CWC), which was negotiated in the 1980s and
entered into force in 1997. Since then digitalization and the adoption of AI has
progressed significantly. After introducing the convention’s verification mecha-
nisms, the authors discuss those treaty provisions as well as the latest Scientific
Advisory Board report that deal with scientific and technological (S&T) advances of
relevance to the Convention. Based on this, Kelle and Forman analyse various
intersections of CWC verification and S&T advances. They conclude that the
CWC has been drafted in a manner that allows it to adapt to S&T progress, thereby
enabling its continued effective verification in an increasingly digitalized world.

1 Introduction

Chemical weapons (CW) comprise the entirety of toxic chemicals that are used to
harm people or animals. They were widely used during World War I and in several
instances since then, most recently in Malaysia, the United Kingdom, the Syrian
Arab Republic and Russia (OPCW, 2017a, 2017b; Costanzi & Koblentz, 2019;
Stone, 2020). The 1993 Chemical Weapons Convention (CWC) codifies the inter-
national community’s agreement on the prohibition of chemical weapons. The
CWC’s robust and unique verification regime, which is implemented by the Orga-
nisation for the Prohibition of Chemical Weapons (OPCW), distinguishes it from
other arms control and disarmament treaties and contributes to its successful
implementation.
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The OPCW has verified the destruction of more than 98% of declared chemical
weapons stockpiles. This is complemented by the CWC’s industry verification
regime, set up pursuant to Article VI of the Convention, which contributes to
upholding the confidence of CWC states parties that chemicals are not diverted for
purposes prohibited by the Convention.

This confidence was called into question by repeated reports of CW use in Syria
starting in late 2012. In response to developments in Syria, the country’s accession to
the CWC in October 2013, and increasing evidence of an offensive Syrian CW
program, in 2014 the OPCW’s Technical Secretariat began to supplement its regular
verification activities with non-routine missions with a view to clarifying all of
the outstanding issues related to the Syrian initial declaration and to addressing the
allegations of use of toxic chemicals as weapons in that country. The work of the
Declaration Assessment Team (DAT) and the Fact-Finding Mission in Syria (FFM),
both of which were established by the OPCW Director-General to uphold the object
and purpose of the Convention, has demonstrated the OPCW’s resilience in
addressing unexpected situations and its capacity to adapt. While the dynamics of
international relations and political conflicts have visibly challenged the work of the
OPCW, necessitating this resilience, advances in science and technology (S&T) are
also extensively cited as a challenge to the full and effective implementation of
the CWC.

Science and technology continually evolve, and while in 1993 after the negoti-
ations that led to the CWC had concluded, we may not have foreseen the specific
S&T landscape before us in the 2020s, it should not be a surprise that much has
changed. Recognizing this inevitability, the drafters of the CWC embedded mech-
anisms in the Convention’s Article VIII to allow the OPCW to stay abreast of S&T
developments of relevance to the Convention. The three main elements of these
mechanisms are (1) the requirement for the OPCW to consider the use of S&T
advances in its verification activities, (2) the mandate for the OPCW’s Conference of
States Parties (CSP) to review S&T as part of the quinquennial CWC review
conferences, and (3) the establishment of a Scientific Advisory Board (SAB) to
provide advice to the OPCW Director-General on S&T of relevance to the CWC.

The adoption of AI-based tools and digitalization is having a profound effect
across scientific disciplines, and chemistry is no exception. It should be noted,
however, that discussions of artificial intelligence and its bearing on the implemen-
tation of the CWC are a recent phenomenon, both in relation to the traditional
verification activities performed by the OPCW and to the organization’s more
recently added investigative capabilities discussed below.

After a general description of the CWC verification provisions, the second part of
the chapter outlines CWC provisions that deal with S&T advances of relevance to
the Convention and presents relevant parts of the SAB report to the Fourth CWC
Review Conference in November 2018. The third part draws the issues of verifica-
tion and S&T advances together by discussing CWC verification in an increasingly
digitalized world.
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2 Verification Under the Chemical Weapons Convention

Effectively verifying the prohibition of chemical weapons under the CWC is based
on the Convention itself and its Annex on Verification. In order to understand how
new technologies including AI fit into this elaborate mechanism, to evaluate where
they offer benefits, and to assess how difficult the implementation of new technol-
ogies would be, this section offers a basic understanding of the different verification
rules and procedures implemented by the OPCW Technical Secretariat and CWC
states parties.

In this context it is important to keep in mind that declarations are the basis of the
CWC’s verification regime; the accuracy, completeness and timelines of initial
declarations by CW possessor states are essential for the functioning of the system.
All measures described in the following section are guided by this basic idea.

2.1 Routine Verification

The aim of routine verification is to ensure that all states’ declarations about either
chemical weapons stockpiles (when relevant) or civilian industrial declarations
match reality.

Routine verification activities related to chemical weapons as carried out by the
OPCW Technical Secretariat are based on CWC Articles IV and V, and Parts IV and
V of the CWC Verification Annex. These treaty provisions contain detailed decla-
ration requirements for CW possessor states, and systematic on-site verification of
storage and destruction activities (Trapp & Walker, 2014; Trapp, 2014a).

Routine industry verification activities for all member states with declarable
industrial chemistry infrastructure are based on Article VI CWC and Parts VI to
IX of the Verification Annex (Sossai, 2014). Here the OPCW’s verification activities
aim at confirming the absence of prohibited activities. States parties have to submit
initial and annual declarations and have to accept data monitoring and on-site
verification of facilities through the OPCW inspectorate. For verification purposes,
the CWC distinguishes between four categories of chemicals, three of which are
grouped into so-called “schedules” in the CWC’s Annex on Chemicals. Chemicals
are listed on these three schedules depending on the degree of risk they pose to the
object and purpose of the Convention and on their use in the chemical industry
(Trapp, 2014b). The fourth category consists of so-called “discrete organic
chemicals” that could also pose a risk to the object and purpose of the CWC.



It is noteworthy that since entry-into-force of the CWC in April 1997 neither a CI
nor an IAU has ever been requested. However, other non-routine missions, most
notably in relation to the Syrian CW program, have been established for:
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2.2 Non-routine Verification

The drafters of the CWC foresaw two types of non-routine verification missions that
states parties could request should there be suspicion of non-compliance: a challenge
Inspection (CI) and an investigation of alleged use of CW (IAU). According to
Article IX (8) “each State Party has the right to request an on-site challenge
inspection of any facility or location in the territory or in any other place under the
jurisdiction or control of any other State Party for the sole purpose of clarifying and
resolving any questions concerning possible non-compliance with the provisions of
this Convention” (Chemical Weapons Convention, 1997). Similarly, with respect to
IAUs, Article X (8) stipulates that “each State Party has the right to request and,
subject to the procedures set forth in paragraphs 9, 10 and 11, to receive assistance
and protection against the use or threat of use of chemical weapons” (Chemical
Weapons Convention, 1997).

• Clarification of Syria’s initial declaration, involving the establishment in 2014 of
a Declaration Assessment Team; and

• Investigation of the alleged use of chemical weapons, for which a Fact-Finding
Mission was created, also in 2014.

As the Syrian initial declaration raised several concerns, the DAT was set up. The
team has undertaken over 20 visits to/consultations with Syria since 2014. In spite of
these efforts, unresolved issues remain. As the OPCW Director-General has stated,
the Technical Secretariat “is not able to resolve all identified gaps, inconsistencies
and discrepancies in the declaration of the Syrian Arab Republic, and therefore
cannot fully verify that Syria has submitted a declaration that can be considered
accurate and complete in accordance with the Convention or Council decision
EC-M-33/DEC.1” (OPCW, 2017a, 2017b). As this assessment remained unchanged
as of spring 2020, the Director-General identified both FFM and declaration-related
issues among the main areas of attention for the OPCW’s future operations in Syria
(OPCW, 2020a).

The OPCW’s FFM was also established in April 2014 after continued reports of
suspected CW use. Allegations of CW use in new incidents have continued to occur,
with instances of sarin, sulfur mustard, and chlorine use as a weapon investigated by
the FFM and the UN-OPCW Joint Investigative Mechanism (JIM). As the name of
the FFM implies, it operates under a mandate to establish facts, not identify
perpetrators. From 2015 to 2017 this latter role was assigned to the JIM, which
issued several reports containing findings from its investigation. These findings
considered a series of incidents and implicated actors on both sides of the conflict
(Kelle, 2019).
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2.3 Beyond Traditional Verification

In June 2018 OPCW member states convened the Fourth Special Session of the
Conference of States Parties and agreed to establish a new investigation and iden-
tification team (IIT) in the OPCW. Identification adds another layer to traditional
OPCW verification activities to effectively address instances of use of CW. Only
with information specifying who the non-complying actor is can CWC States Parties
and the OPCW policy making organs effectively address compliance matters
pursuant to the provisions of the Convention (Kelle, 2019; OPCW, 2020b).

Given the wide range of expertise, technologies and methods that are both
currently in use and under development in forensic science, S&T is a critical part
of attribution work. Recognizing the valuable and actionable information that
modern investigative techniques can provide, at its Twenty-Fourth Session the
SAB recommended the establishment of a temporary working group (TWG) to
conduct an in-depth review of methods and technologies that could be used by
OPCW inspectors for investigative work. Capabilities enabled through these
methods and technologies are crucial for the non-routine contingency operations
that the Technical Secretariat has been increasingly deploying (OPCW-Scientific
Advisory Board, 2018).

3 Science and Technology Under the CWC

3.1 CWC Provisions

The linkages between science and technology and the CWC are firmly embedded in
the Convention itself. Article VIII (6) stipulates that “in undertaking its verification
activities the Organization shall consider measures to make use of advances in
science and technology.” Article VIII (21h) mandates the Conference of the States
Parties to “review scientific and technological developments that could affect the
operation of this Convention and, in this context, direct the Director-General to
establish a Scientific Advisory Board to enable him [. . .] to render specialized advice
in areas of science and technology relevant to this Convention.” Finally, Article VIII
(22) calls on the quinquennial CWC Review Conferences to “take into account any
relevant scientific and technological developments.”

3.2 The SAB Report to the 4th CWC Review Conference:
Toward a Holistic Approach to Verification

As is customary during preparations for a Review Conference the SAB provided a
report on relevant S&T developments to the Fourth Review Conference in



November 2018. This review of “Advances in Science and Technology” addresses
inter alia developments in areas such as computational chemistry, Big Data and
informatics, artificial intelligence, forensic science, remote sensing, and unmanned
systems. The report goes on to recommend that both the SAB and the TS should
continue to assess developments in these fields with relevance to the Convention
(OPCW, 2018, p .5).

78 A. Kelle and J. E. Forman

The SAB’s Temporary Working Group on verification, which provided signifi-
cant input into the report, “considered opportunities arising from technological
change for ensuring the Secretariat’s verification activities remain fit for purpose,
and was of the view that particular attention should be given to remote/automated
monitoring equipment, satellite imagery and information analysis tools.” (OPCW,
2018, p.44).

The report advised that “effective verification is not the assessment of an indi-
vidual data point . . ., but rather all relevant data points pertaining to the site and State
Party” and encouraged the Technical Secretariat “to move towards a comprehensive
systems-based approach where all the separate elements of information are com-
bined and analysed systematically” (OPCW, 2018, p. 45).

The SAB further emphasized that “effective use of data analysis, data mining,
statistical analysis, and attribution analysis would serve to enhance existing capa-
bilities for verification purposes.” Taking this further, the SAB recommended that
the Secretariat put into place an information management structure that could
provide the support required for the verification process . . . [leading to] a more
analytical approach to verification, using all available information (declarations,
inspection reports, satellite imagery, open source information, . . .).” (Ibid.)

Expanding beyond data analytics and the synthesis of diverse data streams to
achieve a holistic picture of verification, the SAB also recommended that remote
and/or automated monitoring technologies be added to the list of approved inspec-
tion equipment. (Ibid). These technologies add an intriguing dimension to the
informatics capabilities considered by the Board, as they enable the collection of
data that in principle could be fed into information analysis algorithms in real time.

More succinctly, through its focused considerations on verification and its
broader S&T review, the SAB has recognized technological opportunities to
enhance capabilities for verification of the Convention in both routine and
non-routine contexts. These opportunities are addressed in the next section.

4 CWC Verification in the Age of Digitalization

4.1 Digitalization, Artificial Intelligence and Security

In a security context, AI receives significant attention for the new challenges,
vulnerabilities and risks it presents. These concerns include military use and wea-
ponization (Sisson et al., 2020) and extend well beyond Weapons of Mass Destruc-
tion (WMD) non-proliferation and disarmament (Cheatham et al., 2019). Across the



sciences, AI has been an enabler for new developments and advances (OECD,
2020). In biology, which has become as much a field of information and computa-
tional science as it is a natural science (Wintle et al., 2017), AI has been transfor-
mative, enabling capabilities for manipulating and understanding biological systems
that were once limited to the realm of science fiction. The resultant changes in the life
sciences have been referred to as a “new scientific revolution” (Chui et al., 2020) and
have raised significant concerns about new capabilities for producing biological
weapons using synthetic biology and gene editing, especially when combined with
AI and other enabling technologies (Brockmann et al., 2019). The science of
chemistry is also experiencing profound changes through adoption of AI-based
tools and digitalization (Deloitte, 2017; World Economic Forum, 2020), although
AI in the context of chemistry is less visible in WMD security discussions than in
those on the life sciences. This is not to say that significant chemical security
concerns have gone unnoticed. Frequently encountered examples in security-
focused discussions include the use of AI tools to design novel toxic chemicals
with effects on life processes that might not respond to state-of-the-art medical
countermeasures or are perhaps more toxic than traditional chemical warfare agents,
AI tools combined with automation for on-demand automated synthesis of toxic
compounds, and especially the prospect of cyberattacks on the operating systems of
chemical production facilities that might result in a large-scale chemical disaster
(Stoye, 2015). Much has been researched and written on the security concerns and
dangers of AI. The references cited in this section provide rich context on these
issues.1
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One significant impact of digital transformation in the chemical enterprise is that
chemical security cannot be fully separated from cybersecurity (Department of
Homeland Security, 2015). In addition to the security concerns already touched
upon, access to sensitive chemical information, which might include methods for
producing chemicals of security concern, add to the risks that AI poses to chemical
weapons non-proliferation.

We cannot ignore the security concerns about AI, its potential risk to chemical
disarmament and non-proliferation, and the potential challenges we may need to be
prepared to address. The security issues are significant and will only increase in
complexity. It is also important to appreciate that AI and the digitalization that it
enables has been steadily finding its way into and transforming a multitude of sectors
and applications for more than a quarter of a century (Bughin et al., 2019). Digita-
lization is no longer an emerging trend. It drives and supports how we conduct
business and operations and it continues to evolve (Deloitte, 2019, 2020), which
challenges us to think of how it might also be used in beneficial ways so that
chemical disarmament and non-proliferation are not left behind or placed at a
significant disadvantage, while the world at large embraces the digital revolution.

1The authors do not feel they can make meaningful additions to the wealth of reference material on
the threat space within the confines of this chapter.
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4.2 What Is Artificial Intelligence?

AI is a term that is used in a number of different ways. It is often used to describe
software systems possessing “general” or “general-purpose” intelligence (Berruti
et al., 2020) which, despite the progress made in developing AI systems, has yet to
be realized (Benaich & Hogarth, 2020). There is also debate on what is actually
possible (Fjelland, 2020).

The AI we currently see in use might be better thought of as software techniques
(algorithms) that instruct computers to perform tasks. The techniques are often
defined by terms such as “machine learning,” “probabilistic reasoning,” “fuzzy
logic,” “logic programming” and “ontology engineering” (WIPO, 2019). These
terms describe methods for performing computational tasks (WIPO, 2019). AI also
does not represent a single technology (Benaich & Hogarth, 2020), but rather
requires that the algorithms be integrated with computers and data in order to
function (Buchanan, 2020), with additional technology possible needed for
providing data.

From this integrated computer, algorithm, and data perspective, AI might be
thought of as a component of a system which may require other components to
perform operational tasks. These other components might be sensors to collect data,
a camera to generate images that the AI can recognize, a vehicle to operate, or a game
to play or combinations of various data and/or information-collecting components. It
is often the case that such AI tools have limited versatility (Bergstein, 2020): they are
built for specific tasks and coupled with components appropriate to successfully
performing that task. Even while performing the task for which the AI has been
designed, if the data used to train the AI has significant differences from the use case
where the AI is deployed (Heaven, 2020a) or is exposed to situations that have not
previously been encountered, the algorithms may “break”—ironically there are even
examples of AI being affected by COVID19, with abrupt changes in human behavior
confusing algorithms (Heaven, 2020b). The use of AI tools in healthcare has
provided some illustrative case studies of how the types and characteristics of
training data can lead to success (Hao, 2020) or failure (Heaven, 2020a).

AI tools can often outperform humans in many tasks, especially when it comes to
processing and searching for information, playing games (especially for games
where the best human players must think as many moves ahead of the current turn
as they possibly can), and for tasks that require extended amounts of repetition.

4.3 Digitalization in Routine Chemical Weapons Convention
Verification

The chemical industry, one of the Chemical Weapons Convention’s most important
stakeholders, has been steadily increasing its adoption of AI-enabled digitalization
as evidenced by the significant investment in “Industry 4.0” (Deloitte, 2017; Elser,



2019; Lin et al., 2019; Microsoft, 2019; World Economic Forum, 2020). Effectively
this is chemical production enabled by smart supply chains and smart factories
where equipment is augmented with connectivity and robotics to create fully inte-
grated cyber-physical information systems. Industrial internet of things (IoT) sensors
collect data and track information, with capabilities for visualizing the entire pro-
duction chain and making decisions in real time. Ideally, all aspects of the chemical
enterprise, including research and development, supply chains, manufacturing pro-
cesses, sales and marketing, and customer support, are integrated into a system
enabled by AI-driven big data analytics.
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The adoption of Industry 4.0 by chemical companies improves operational
efficiency, digitally enables innovative product offerings, accelerates innovation
cycles, intensifies collaboration and data sharing across the value chain, develops
new and more flexible business models, and improves customer interaction
(Deloitte, 2017; Elser, 2019; Lin et al., 2019; Microsoft, 2019; World Economic
Forum, 2020). Hidden under all this is something that directly affects treaty imple-
mentation—greater ability to track and report information, with the potential to
streamline regulatory reporting and thus declarations under the CWC. While it is
unrealistic to think that a CWC inspection would be given any access to industry
data for verification purposes, the system does present the possibility of the use of
data analytics for verification of declarations, e.g. “sampling and analysis” of data.

While the SAB reports do not explicitly state it, recommendations for holistic
data-driven verification capabilities combined with remote and automated data
collection tools necessitate a convergence of the virtual world of data and algorithms
with the physical world of chemical inventories, supply chains, physical locations
and biochemical traces indicative of the presence of, or exposure to, a chemical
weapon agent. Realizing this convergence requires integration of a diversity of data
streams (with both structured and unstructured data types) to establish connections
between observable and measurable physical objects and entities. Conceptually, the
Board would appear to be discussing the same basis upon which Industry 4.0 is
being developed, only in the context of verification.

The SAB’s consideration of how AI and digitalization are opportunities which
offer potential benefits to the verification system does not lie outside the mandates of
the CWC. Paragraph 6 of the Convention’s Article VIII mandates the OPCW to
consider the use of advances in science and technology in verification, which is
exactly what the SAB is proposing. It is not that the SAB is unconcerned about
security risks of AI or its potential misuse to aid in the realization of new chemical
threats. Rather, in recognizing that the adoption and uses of these tools will only
increase within the chemical enterprise, the Board is recommending that to keep
pace with development in S&T relevant to the CWC these cannot be ignored. This
recommendation includes consideration of the potential these technologies have
when used for verification purposes.

The capability to integrate data streams and track and cross-check information has
clear applications for verification of declarations submitted to the OPCW. The
Technical Secretariat has already embarked on its own digital transformation in
this area, beginning with the development of systems such as the Secure Information



Exchange (SIX) (OPCW, 2020c) and a recently rolled out Electronic Declaration
Information System (EDIS) (OPCW, 2020d).
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Industry 4.0 supply chain concepts have also been recognized as potentially
valuable for implementation, where for example digital ledgers (like “Blockchains”)
(Elser, 2019) might be drawn upon for diminishing and eliminating discrepancies
between the quantities of scheduled chemicals declared by Member States reporting
transfers. The Blockchain as a digital record of all transactions of a given chemical
product (from its manufacture to the end user) provides a mechanism for verifying
reported (or for recognizing and correcting incorrectly reported) imports and exports
of scheduled chemicals. The life cycle of chemical products (from raw materials to
production to disposal and/or recycling, and all steps in between) involves transfers
between numerous entities (companies, transportation, customers, and more). A
digitalized record of transactions could not only provide a means for more effec-
tively flagging transfer discrepancies, but could also act as a chain of custody. In
such an application, it might be more difficult to circumvent declarations and
regulatory reporting. With digitalized systems giving rise to increased concerns
about the use of technology to hide information, these types of decentralized
approaches to tracking and reporting may warrant consideration.

The recognition of scheduled chemicals is another area where advanced infor-
matics tools could provide great benefit. Outside the perspectives of chemists whose
work focuses on the universe of atoms and molecules contained within the CWC’s
Schedules, it may not be appreciated how all-encompassing these schedules are in
regard to the types of chemicals they cover—there is an unlimited number of
possible chemical compounds that could exist which meet the criteria established
within these schedules (Timperley et al., 2018). The 34,254 chemicals in the
OPCW’s Scheduled Chemicals Database (OPCW, 2020e) represent the scheduled
chemicals that have been reported, but this is a mere fraction of what might exist
(Pontes et al., 2020). Chemists who work with such compounds can quickly
recognize previously unreported chemicals that meet the criteria for inclusion in a
schedule from the molecular structure. However, officials at border stations or
regulatory bodies who are not trained in chemistry or have no access to trained
chemists may not realize a chemical is a scheduled chemical when it is not labeled
with the exact name or number found on reference lists that they have access to
(on which previously unreported scheduled chemicals are unlikely to be found).
Digitalized tools that can match chemical structures to schedule criteria would be
beneficial for end users who do not speak the “language of chemistry” (OPCW,
2019b).

Chemists who work with scheduled chemicals could also benefit from AI tools
capable of recognizing and assigning molecular information to corresponding sched-
ules. In test methods for scheduled chemicals, the presence of a specific chemical is
confirmed by comparison of its analytical data (most commonly using mass spectra)
to validated reference data. The reference data is obtained by analysis of an actual
sample of the chemical being verified. AI tools that recognize characteristic signals
(“peaks”) in mass spectral data which correlate with specific molecular structural
features open up potential for detection of scheduled chemicals without a previously



obtained reference data set. Such methods have not been fully developed and, more
importantly, validated for this application, although current research in this direction
has produced encouraging results (Lim et al., 2018).
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4.4 Digitalization in Non-routine Chemical Weapons
Convention Verification

Up to this point we have touched on areas where digitalized tools and AI are being
used or have potential for use in routine verification activities. The SAB and its TWG
on investigative science and technology have given the most consideration to
applications in non-routine situations.

Investigative work might use digital tools and technologies to collect verifiable
information that can ensure the information is unaltered from its original form (and
contains verifiable time stamps, geolocation information and other metadata). While
this may not be specifically an AI tool, digitalized tracking (in the spirit of Industry
4.0 supply chains) could make such tools more powerful for investigative purposes.
The SAB’s TWG on investigative science and technology also recognized the value
of advanced data analytics for a variety of other investigative purposes (OPCW,
2019a).

The use of AI tools to help analyze chemical sample data was previously
mentioned in the context of test methods and proficiency testing. In the case of
complex chemical samples (for example, where the chemicals of interest might be
highly degraded, it may be difficult to obtain a background/control sample and/or the
chemical of interest may have been fully metabolized by plants, animals or
microbes), AI tools that can model and predict chemical uptake in plants (Bagheri
et al., 2020) and metabolic products (Toubiana et al., 2019) might help in the
detection of chemicals contained in samples that can verify a specific chemical
exposure for investigative purposes.

AI tools also have an interesting potential for helping to recognize “unusual”
events and phenomena. Areas where this has been demonstrated include agricultural
applications, where a variety of remote sensing data streams are collected on crops
which provide farmers with real-time actionable information on plant health (which
allows immediate action such as watering, or applying fertilizer or pesticide to
specific sections of a field) (Liakos et al., 2018).

Tools developed for agriculture include cellphone apps that can diagnose “plant
diseases” from digital photos (based on machine-learning algorithms) (Mohanty
et al., 2016). There is also significant interest in AI tools that can help to quickly
determine and diagnose the health status of humans—this could be from combina-
tions of images, measurements (some non-invasive such as temperature, pulse and
other readings that can be taken on the spot by a medical responder) and biomedical
test results (Yu et al., 2018). For this kind of application, it is noteworthy that
chemical warfare agent toxidrome recognition from social media has been



demonstrated by forensic toxicologists (Toprak et al., 2020). While this was not
accomplished by means of an AI tool, developing such a method is not inconceiv-
able. AI tools that can help recognize signs and symptoms of toxic chemical
exposure not only have investigative value but may also be useful in helping to
quickly diagnose exposure and initiate treatment. We should not expect to see AI
tools replacing medical professionals, but their ability to recognize chemically-
induced symptoms that may not be commonly seen or immediately recognized by
medical responders with limited experience with toxic chemical exposures could
help to improve emergency or retrospective diagnosis of a chemical toxidrome.
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AI tools may also present other opportunities for verification. Recognizing
unusual chemical exposures in vegetation (whether predictive of a specific chemical
or simply distinguishable from common presentation of unhealthy plants) may be a
useful tool for investigative work (and could help identify samples for chemical
analysis). The use of “precision agriculture”-derived techniques to recognize signs of
chemical warfare agent exposure has actually been considered by the SAB (Forman
et al., 2018), and some research groups (Kuska et al., 2018).

4.5 Will Digitalization Disrupt Verification Procedures?

We have highlighted a number of areas where AI tools provide potential benefits in
chemical disarmament and non-proliferation, including several examples currently
being used or researched. As AI continues to become more ubiquitous, keeping pace
with evolving S&T will only demand its adoption and use to a greater degree. In this
regard we note that such adoption is not absent from OPCW. Nonetheless, even with
all the advances in S&T, the use of enabling technologies must continue to be looked
at from a practical point of view. Field testing and validation of results are needed,
and AI tools that can be relied upon for use in decision-making require appropriate
datasets for training and validation—in some cases it may never be possible to
acquire such data. Similarly, while not the focus of this paper, the security concerns
of AI and digitalization cannot be discounted. These need to be understood and
vulnerabilities identified in evaluating whether any new tools are suitable for an
intended application. Similarly, cybersecurity capabilities, which need to be
dynamic and constantly evolving, must be fit for purpose to counter the use of AI
tools designed to circumvent verification or compromise digitalized verification
tools. Uncertainties as to how much these systems can be trusted for use in verifi-
cation and how resilient they are to exploitation of vulnerabilities will certainly
challenge their adoption.

None of the issues described above are unique to considerations of the use of AI
tools in treaty implementation, as demonstrated by on-going debate and discussion
across sectors and policies where AI tools are used (Brundage et al., 2020). Never-
theless, we live in exciting times, the enabling power of AI is in principle only
limited by our imagination and the data available for training algorithms. As the
SAB continues its consideration of new tools and emerging technologies (Forman



et al., 2018; OPCW, 2019a), we look forward to seeing how these recommendations
are discussed at the OPCW and in its policy-making organs.
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5 Conclusions

In summary, AI and digitalization have evolved into key components of keeping
pace with S&T, and we find it intriguing that the CWC mandates consideration of
S&T advances for verification. AI and digitalization cannot be treated like a singular
new technology that we monitor and somehow mitigate. These tools are embedded
in our daily lives in ways we may not even be aware of. Many potential benefits are
clear, but suitability and reliability for any given task require validation, as well as
consideration of the often murky risks and security concerns of cyberspace. Inde-
pendent of these concerns, we are already seeing interest in and dialogue concerning
AI tools in chemical non-proliferation (Borrett et al., 2020). The SAB’s advice has
been forward-thinking in regard to this area of S&T, providing much information for
others to build upon.

The drafters of the CWC did not intend that this Convention would only eliminate
the chemical weapons of today. They also saw it as a tool for protecting and
strengthening the norms against chemical weapons in perpetuity. As the CWC is
underpinned and impacted by S&T, treaty implementation, and especially verifica-
tion, keeping both abreast of, and keeping pace with the twenty-first century’s
evolving and dynamic S&T landscape is necessary for achieving this goal. The
discussion of S&T in the context of security often appears to involve fear—at this
juncture in time, with the rapid changes in S&T that we are seeing, we cannot afford
to be afraid. This does not mean that we should ignore the risks and challenges, but
rather that we must bring scientific literacy into our discussions and understand both
possible and practical aspects of S&T advances—in both beneficial and malicious
uses. In the case of AI and digitalization, these tools and technologies are not going
to go away, and their enabling capabilities provide intriguing opportunities for treaty
implementation. The SAB, in drawing upon opportunities and potential uses of
emerging technology, provides a forward-looking perspective on supporting the
CWC as we move into a future, which is sure to present new and unexpected
challenges. Success in meeting these challenges will require new and innovative
approaches. This is where S&T and the way it is adopted and implemented provides
opportunity.
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AI and Biological Weapons

Filippa Lentzos

Abstract Lentzos highlights key impacts of machine learning and automation on
biological research, medicine and healthcare, emphasizing how these developments
could make the production of biological weapons easier and proliferation more
likely. While biological weapons are completely prohibited by the Biological
Weapons Convention, artificial intelligence and other converging technologies are
radically transforming the dual-use nature of biology and present significant chal-
lenges for the treaty. The chapter discusses these challenges and presents a vision for
how biological arms control can evolve to remain relevant in the Fourth Industrial
Revolution.

1 Introduction

A “game changer” that is radically transforming the dual-use nature of biology is
how Eleonore Pauwels, an internationally renowned expert and director of the
Anticipatory Intelligence Lab at the Woodrow Wilson International Center for
Scholars, characterized artificial intelligence (AI) and its impact on biological
weapons and arms control (Pauwels, 2019a). She was speaking to Biological
Weapons Convention (BWC) delegates at their summer 2019 meeting to review
science and technology developments, having been invited to share her views on
emerging technologies relevant to the 1972 multilateral treaty. It was the first time AI
was given serious consideration at the treaty’s annual meetings. Pulling no punches,
Pauwels explained that “the convergence of biotechnologies with cyber and AI
technologies covers the whole spectrum of the bioeconomy, from precision medicine
to infectious disease to the bioindustry. It will deeply impact how long we live, how
we treat illnesses, and our view of our place on the biological continuum,” also
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adding “yet, beyond the promises, we also face an era of hybrid security threats that
are poorly understood, leaving the multilateral system unequipped to anticipate and
prevent emerging risks” (Pauwels, 2019a).
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The BWC is the principal legal instrument banning biological warfare and the
deliberate use of bacteria and viruses to inflict harm. The treaty itself is relatively
short, comprising only 15 articles, but over the years, the treaty articles have been
supplemented by a series of additional understandings reached at treaty review
conferences. The term “verification,” traditionally thought of as the foundation of
post-Second World War weapons treaty compliance regimes, does not feature in the
text of the BWC (Lentzos, 2019a). Efforts in the 1990s to develop a verification
mechanism for the treaty failed, and the main role and responsibility for BWC
compliance continues to fall on the treaty’s 183 states parties. The Security Council
is to act as the final arbitrator on allegations of compliance breaches, but it has not to
date been requested to investigate any allegations. The World Health Organization,
the Food and Agriculture Organization of the United Nations and the World
Organization for Animal Health have potential roles in clarifying ambiguous events
and situations, but they only provide expert information to help states parties, and
this does not amount to determining compliance.

This chapter draws together the surprisingly scant consideration given by the
biological arms control community to date to the potentially transformational power
of AI for biology. It provides an overview of some of the main impacts of machine
learning and automation on biological research, medicine and healthcare expected
by experts, emphasizing how these developments could make the production of
biological weapons easier and proliferation more likely. The chapter then turns to
discussing how AI could help in furthering the aim of the BWC to ensure biological
weapons are not developed or used. In closing, the chapter considers how best
biological arms control can evolve to reflect the radical transformations AI is already
beginning to introduce into the biological field.

2 Adding Computing Power to Bioinformatics

Genomic technologies are driving a vast expansion in genomic data, from gene
sequences and entire genomes to data that links genes to specific functions and other
types of metadata for humans, other animals, plants and microbes. This data is
becoming increasingly digitized (Bajema et al., 2018), and computational power is
significantly changing how genomic data is analyzed. This integration of AI com-
putation into biology opens up new possibilities for understanding how genetic
differences shape the development of living organisms, including ourselves, and
how these differences make us and the rest of the living world susceptible to diseases
and disorders, and responsive to drugs and treatments.

Advanced pattern recognition and abstracting statistical relationships from data—
the hallmarks of machine and deep learning—have shown significant potential to
help researchers make sense of complex genomic datasets and extract clinically



relevant findings. Take two prominent examples: functional genomics and tailored
drug discovery.
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The ability of machine learning to link, correlate and analyze data is particularly
useful for interpreting gene functions and identifying genetic markers responsible for
certain diseases (Brockmann et al., 2019). Known as functional genomics, this field
of research makes it is possible to predict how likely someone is to develop diseases
such as type 1 diabetes or breast cancer or to develop certain traits and capabilities,
such as someone’s height or resistance to specific pathogens that result from
complex genetic influences. Deep learning also enables computer-based experimen-
tation for functional genomics, and work is underway to predict how genetic
sequences might function before they are assembled—even if the combination has
not been observed in nature. Computational power has also helped researchers
understand the evolving relationship between our genotypes, phenotypes (physical
characteristics) and microbiomes (the bacteria and viruses that live on and inside the
human body), as well as to improve our genotype-phenotype functional knowledge
of pathogens.

Private industry has been instrumental in developing data-mining techniques.
Google’s genomic AI platform, DeepVariant, for example, has been at the forefront
of developing an automated, deep-learning approach to identifying genetic variants
in an individual genome from billions of short sequences (Poplin et al., 2018).

Adding computational power to drug development facilitates “parallel read
operations of 10 billion nucleic acid molecules in a single experiment” and can
increase experimental precision down to single-molecule manipulations (Spiez
Laboratory, 2018, p. 34). The use of deep learning to develop new drug candidates
has overcome many limitations of physics-based models, enabling models to be built
from simple representations of chemical and biological entities and automating
suggestions of synthesizable structures with improved properties. It also highlights
how the convergence of automation with evolutionary algorithms vastly expands the
number of materials that can be synthesized, tested and optimized.

In developing new drug candidates, a robot can reportedly screen over 10,000
compounds per day through conventional “brute-force” tactics (University of Cam-
bridge, 2015). However, while simple to automate, this approach is still relatively
slow and wasteful because every compound in the library has to be tested. The first
AI robot to automate early-stage drug design came on stream in 2015 (Williams
et al., 2015). Called “Eve,” it was developed by researchers at the Universities of
Aberystwyth and Cambridge, who had earlier developed “Adam,” a machine to
independently discover scientific knowledge. To make screening processes for
potential drugs intelligent, Eve randomly selects a subset of compounds from a
library, carries out various tests on them, and, based on the compounds that pass the
tests, uses statistics and machine learning to predict new structures that might
achieve an even better score (University of Cambridge, 2015).

Private companies also contribute substantially to the development of machine
learning in drug development. The pharmaceutical giant Novartis, for example, used
computational power to develop a vaccine in less than 3 months from the first
reported cases of humans becoming infected with H7N9 influenza virus (IAP,



2015, p. 11). In another example, Deep Genomics uses its AI platform to map
pathological genetic pathways in identifying drug candidates.
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Advances in function genomics and drug discovery, as well as in other areas,
offer the possibility of developing bespoke, or personalized, treatments using
machine learning analysis of genomic and health data. “Precision public health”
aims to deliver the right intervention to the right population at the right time, and it is
already beginning to deliver genomic-based interventions for health and health care
(Khoury et al., 2018). The Centers for Disease Control and Prevention promotes its
wide use of artificial intelligence and machine learning to improve public health
surveillance (such as forecasting of influenza) and disease detection, mitigation and
elimination (Siordia & Khoury, 2020). While still in its early days, precision
medicine—spanning personalized vaccines and antibodies, personalized treatment
relying on virology and microbe research, personalized cancer treatments and
treatments involving in vivo gene editing—is also starting to become a reality
(Regalado, 2018).

A number of private companies, such as Tempus, IBM and Pfizer, are actively
exploring possibilities, though these efforts are mostly focused on understanding
how machine learning could help identify genetic markers or patients that should or
could be candidates for personalized treatments (Pauwels & Vidyarthi, 2017).
Experts emphasize that there is “still pervasive uncertainty about how accurate
deep machine-learning will be in drawing useful interferences between the different
datasets that make our biology” (Pauwels & Vidyarthi, 2017, p. 5).

3 Mounting Security Concerns

Various risk assessment frameworks have been used to get a sense of the potential
security risks arising from the mix of artificial intelligence and biotechnology
(O’Brien & Nelson, 2019). But balancing the more general reach needed to capture
a broad scope of converging technologies in the life sciences with the need to
maintain enough specificity to capture nuances has proven difficult. The main
security concerns boil down to worries that, if the intent were there, the convergence
of emerging technologies could be used to speed up the identification of harmful
genes or DNA sequences (Brockmann et al., 2019). More specifically, there are
concerns that adding advanced pattern recognition to genomic data could signifi-
cantly facilitate: the enhancement of pathogens to make them more dangerous; the
modification of low-risk pathogens to become high-impact; the engineering of
entirely new pathogens; or even the re-creation of extinct, high-impact pathogens
like the variola virus that causes smallpox. These possibilities are arising at a time
when new delivery mechanisms for transporting pathogens into human bodies are
also being developed. In addition to the bombs, missiles, cluster bombs, sprayers and
injection devices of past biowarfare programs, it could now also be possible to use
drones, nano-robots or even insects.
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Added to these pathogen-specific risks are traditional cyber risks and
“cyberbiosecurity” risks focused particularly on the bioeconomy (Murch & DiEuliis,
2019). Cyberbiosecurity risks include waging adversarial attacks on automated
biocomputing systems, biotech supply chains or strategic cyberbiosecurity infra-
structure. Malicious actors could, for example, use AI malware to co-opt networks of
sensors and impact control decisions on biotech supply chains with the intent to
damage, destroy or contaminate vital stocks of vaccines, antibiotics and cell or
immune therapies. In another scenario, AI malware could be used to automate data
manipulation with the intent to falsify, erase or steal intelligence within large
curations of genomics data. Such data poisoning could affect how pathogens are
detected and analyzed. It could also affect bio-intelligence on complex diseases in
subpopulations collected over many years.

The merger of the biological data revolution with computing power has created
another serious security concern: ultra-targeted biological warfare. In past biowar-
fare programs, weapons targeted their intended victims through geographic location.
Advances in biotechnology open up the possibility that malicious actors could
deploy a biological weapon over a broad geographic area but only affect targeted
groups of people, or even individuals.

The possibility of such “genetic weapons” was first discussed in the biological
arms control community in the 1990s, as the Human Genome Project to map the full
complement of human genes got underway. The UK government said, “it cannot be
ruled out that information from such genetic research could be considered for the
design of weapons targeted against specific ethnic or racial groups” (BWC/CONF.
IV/4). The British Medical Association cautioned that “the differential susceptibility
of different populations to various diseases” had been considered in the past, and that
“whilst we should hope that genetic weapons are never developed, it would be a
great mistake to assume that they never can be, and therefore that we can safely
afford to ignore them as a future possibility” (BMA, 1999). A report from the
Stockholm International Peace Research Institute (SIPRI) spoke of the potential
for “future development of weapons of mass extermination which could be used for
genocide” (SIPRI, 1993).

Developments in genomic technologies and other emerging technologies, espe-
cially machine and deep learning, have spurred renewed concerns. “Access to
millions of human genomes—often with directly associated clinical data—means
that bio-informaticists can begin to map infection susceptibilities in specific
populations,” a recent report from the United Nations Institute for Disarmament
Research warned (Warmbrod et al., 2020). A United Nations University report,
meanwhile, asserts that “deep learning may lead to the identification of ‘precision
maladies,’ which are the genetic functions that code for vulnerabilities and inter-
connections between the immune system and microbiome (Pauwels, 2019b). Using
this form of bio-intelligence, malicious actors could engineer pathogens that are
tailored to target mechanisms critical in the immune system or the microbiome of
specific subpopulations.” A 2018 National Academies of Sciences report suggests
“[a]ctors may consider designing a bioweapon to target particular subpopulations
based on their genes or prior exposure to vaccines, or even seek to suppress the



immune system of victims to ‘prime’ a population for a subsequent attack (NASEM,
2018). These capabilities, which were feared decades ago but never reached any
plausible capability, may be made increasingly feasible by the widespread availabil-
ity of health and genomic data.”
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It is important to note that there are barriers limiting access to targeted biological
weapons. The technical base, expertise and funding required for the design of a
targeted biological weapon suggest that only a significantly resourceful and moti-
vated actor would be likely to explore this possibility (Lentzos, 2017).

4 How Should the BWC Respond?

Ultra-targeted biological weapons are relatively unlikely to be used because of the
complexity required to create them (Brockmann et al., 2019). If the purpose is to
harm a specific individual or group, most malevolent actors would probably resort to
more low-tech or direct methods, such as firearms or poison. Unfortunately, this is
not a sufficient basis for biological arms control in the twenty-first century. As one of
the great champions of biological disarmament, Matthew Meselson, professor of
molecular biology at Harvard University, reflected in 2000 as he contemplated the
century ahead in an essay entitled “Averting the Hostile Exploitation of Biotechnol-
ogy”: “[A]s our ability to modify fundamental life processes continues its rapid
advance, we will be able not only to devise additional ways to destroy life but will
also become able to manipulate it—including the processes of cognition, develop-
ment, reproduction and inheritance. . . Therein could lie unprecedented opportunities
for violence, coercion, repression, or subjugation” (Meselson, 2000).

The current BWC regime comprehensively prohibits biological weapons, under-
stood as biological agents used for harmful purposes. Parties to the treaty agree that
the BWC unequivocally covers all microbial or other biological agents or toxins,
naturally or artificially created or altered, as well as their components, whatever their
origin or method of production.

On the whole, this covers the pathogen-specific risks and risks of ultra-targeted
weapons. Indeed, the UK government, which first raised the issue of genetic
weapons as a possibility in the mid-1990s, specifically stated that genetic weapons
would be a “clear contravention” of the treaty (BWC/CONF.IV/4). Cyberbiosecurity
risks are not covered by the BWC, but the BWC and arms control treaties more
generally are not appropriate instruments to address these sorts of risks.

Where there might be some uncertainty is where harm does not involve biological
agents (Lentzos & Invernizzi, 2018). Developments in science and technology are
making novel biological weapons conceivable that, instead of using bacteria or
viruses to make us sick, directly target the immune, nervous or endocrine systems,
the microbiome, or even the genome by interfering with, or manipulating, biological
processes. This could be achieved, for example, by using a construct based on
synthetic structures created or inspired by DNA or RNA, but not qualifying as
DNA, RNA or any other known, naturally occurring nucleic acid. In this sort of



case, the coverage of the BWC is less clear, but the intent of the treaty to prohibit
such harm is beyond doubt.
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The real challenge for the treaty, however, is not in its coverage but in ensuring
states parties comply with it and live up to their obligations. This is particularly
difficult as relevant materials, equipment and technical know-how are diffused
across multiple and varied scientific disciplines and sectors. Moreover, biological
agents themselves exist in nature and are living organisms generally capable of
natural reproduction and replication.

The dual-use nature of biology and the challenges it poses for compliance
assessment was already recognized in the early phase of BWC treaty negotiations.
In a 1968 statement to the predecessor of the Conference on Disarmament, the
United Kingdom noted, for instance, that “no verification is possible in the sense
of the term as we normally use it in disarmament discussions” (Mulley, 1968). In
other words, it was not considered possible to verify the BWC with the same level of
accuracy and reliability as the verification of nuclear treaties such as the Treaty on
the Non-Proliferation of Nuclear Weapons (NPT), which was negotiated immedi-
ately prior to the BWC. Consequently, Article I of the BWC—through which states
“agree to never under any circumstances acquire or retain biological weapons”—is
vague in demarcating the borders of prohibited and legitimate activities. Article I
merely refers to biological agents “of types and in quantities that have no justifica-
tion for prophylactic, protective or other peaceful purposes.”

This “general purpose criterion” of the BWC means the treaty permits almost any
kind of research for defensive or protective purposes. Some of this work is justifi-
able. Other research treads closer to the blurred line between defensive and offensive
work. The trouble for states in distinguishing permitted biodefense projects from
prohibited projects is that it is not possible to assess the facilities, equipment,
material and activities involved alone, but the purpose, or intent, of those activities
must also be examined and interpreted (Lentzos & Littlewood, 2018).

The significant, and accelerating, advances in the ability to manipulate genes and
biological systems, alongside developments in emerging technologies such as AI,
automation and robotics, and the rise in biodefense programs and build-up in
capacities (Koblentz & Lentzos, 2016) mean that Cold War-era tools of compliance
assessment are becoming increasingly outdated.

To determine if there is intent, it is not enough to simply count fermenters,
measure the sizes of autoclaves, and limit amounts of growth media. More and
more states recognize that biology, to a large extent, defies material accountancy-
type verification methodologies. The United Kingdom, for instance, recently noted
that BWC compliance is “much more one of transparency, insight and candour,
rather than material balances or counting discrete objects such as fermenters”
(United Kingdom, 2019).

Somewhat ironically in our ever-expanding digital world, a shift is underway
from quantitative approaches and binary models of compliance assessment in
biological arms control to more qualitative methods. Leading states are exploring
means of demonstrating good practices and responsible science through new volun-
tary initiatives that enable them to demonstrate transparency and build trust;



initiatives such as peer review, implementation review and transparency visits
(Lentzos, 2019b). These information-sharing initiatives emphasize interaction and
flexibility, expert-level exchanges of best practices rather than just on-site monitor-
ing, and a broad conception of relevant laboratories and facilities—and they have
been deemed to add real value to compliance judgments by participating states
(Belgium et al., 2016).
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Similarly, as a way to complement laws and regulations around biosecurity, civil
society groups have led the development of norm-building controls such as codes of
conduct, prizes, awards, competitions and other incentives for good behavior. The
flip-side—leveraging reputational risks, corporate shaming and social pressures for
poor behavior—is also beginning to be explored. It has become abundantly clear
that, in the Fourth Industrial Revolution, compliance with the BWC needs to be less
about verifying a binary state—being “in compliance” or “not in compliance”—and
more about analyzing justifications provided for the activities in question and
managing dual-use potential.

5 Evolving Biological Arms Control

For biological arms control and the UN more generally, the broader challenges
involve extending the management regime to stakeholders other than countries,
particularly to private industry and civil society groups, but also to other entities,
and maintaining contemporary relevance as the global forum for security debates on
emerging technologies. Technologies, like biotechnologies, that have traditionally
been compartmentalized in elite siloed institutions and national labs and monitored
by national governments are now increasingly accessible to and even controlled by
private tech platforms and research communities around the world. In the era of AI,
limiting access to intangible transfer of knowledge and tools involving dual-use
research will only become more difficult.

There is a narrowing window of opportunity to evolve biological arms control on
a structured basis. One way to do this—and to link the biological field with other
emerging technologies—is to actively encourage collaborations across AI, cyber and
biotechnologies in order to develop responsible security practices where scientists
learn enough about each converging field and its impact on dual-use research. Yet,
on its own, this type of collaboration is not enough to protect the world from misuse
of powerful and converging technologies.

One idea for improving the management of broad and fast-paced technological
advances involves a World Economic Forum-like “network of influence,” composed
of exceptional individuals from business, academia, politics, defence, civil society
and international organizations, to act as a global “Board of Trustees” to oversee
developments relevant to biological threats in science, business, defense and politics
and to decide on concerted cross-sector actions (Lentzos, 2019c). A similar idea—
not limited to the biological field but cutting across emerging technologies—would
develop a “Global Foresight Observatory” comprising a constellation of key public



and private sector stakeholders convened by a strategic foresight team within the UN
(Pauwels, 2019b). The Board of Trustees or the Global Foresight Observatory could
be supplemented by a secondary oversight layer that enlists individuals and select
institutions to act as “sentinels” (Lentzos, 2019c). These sentinels could have dual
functions: first, to actively promote responsible science and innovation, and second,
to identify security risk for consideration by the Board or the Observatory.
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These new governance structures could be supplemented by political initiatives—
AI and bioinformatics groups, for example—to establish a new type of transparency,
confidence-building and BWC compliance assessment, and to support the preven-
tion of biological weapons development and the management of dual-use biological
research. The colossal challenges of converging technologies will require bold ideas
like these to re-envision future biological arms control.
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Doomsday Machines? Nukes, Nuclear
Verification and Artificial Intelligence

Jana Baldus

Abstract This chapter aims to paint a clearer picture of the use of AI and autonomy
in nuclear weapon systems. It asks how AI and autonomy are (and have been) used
thus far: Do qualitative improvements make nuclear weapons more secure or more
unreliable, unstable and unpredictable instead? Do technological advances increase
the risks of nuclear weapons use or can they help prevent nuclear war? The answer is
far from obvious. The same technology that could increase advance warning time
could lead to more complex decision cycles and shorter reaction times in crises. AI
could contribute to preventing the spread of nuclear weapons, help enhance verifi-
cation systems, and increase transparency among states. On the other hand, the use
of AI also creates its own verification problems. Accordingly, this chapter aims to
provide a balanced assessment of the possible benefits and dangers of integrating AI
or autonomy in nuclear weapons and nuclear verification systems.

1 Introduction

In the movie series The Terminator an artificial superintelligence called Skynet
triggers a nuclear war among humans, causing the death of three billion people.
Out of fear of being shut down, Skynet takes control of US nuclear forces and
launches a nuclear attack against Russia (which blindly retaliates). This futuristic
scenario seems to be the pop-cultural yardstick by which the artificial intelligence-
nuclear weapons nexus is measured. The good news is: if our greatest fear is a
revengeful, self-conscious superintelligence that wages nuclear war against human-
kind, we have nothing to worry about (at least for now): “The state of the art, while
impressive, still trails a long way behind the cultural perception of what autonomous
systems ought to be able to do in a military context, namely operate safely and
reliably in [a] complex, uncertain and adversarial environment” (Boulanin, 2019).
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The tale of benefits and dangers of new technologies seems to be at its strongest in
the nuclear field. The use of artificial intelligence (AI) and autonomy holds the
promise of strategic advances for nuclear warfare: improved early warning and threat
detection systems, optimization of logistics, even enhanced decision-support sys-
tems (Horowitz, ; Sayler, ; Sauer, ). On the other hand, nuclear-
weapon states fear that they could lose their second-strike capability if they fail to
keep pace with technological progress. The biggest players in the nuclear field are
already outperforming each other with more and more capable systems (for an
overview, see Boulanin et al., ). Russia gave a glimpse of the possible future
when it announced the development of Poseidon, a nuclear-powered, nuclear-armed
underwater drone in 2015. The US on the other hand is developing a new stealth
bomber—the B-21 Raider—that is capable of carrying both conventional and
nuclear weapons and will only optionally be crewed (Gertler, ). These two
examples illustrate how autonomy can creep into nuclear weapon systems. And
indeed, some media are already warning of worst-case scenarios such as “cata-
strophic nuclear use” or even what has been dubbed “nuclear holocaust,” as in the
science fiction world of The Terminator. But the tale about new and enhanced
weapons technologies only shrouds one fairly simple fact: in general terms, AI
(in a narrow sense) is already being used in nuclear weapon systems and has been
for a long time.
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The aim of this chapter is to paint a balanced picture of the use of AI and
autonomy in nuclear weapon systems. It asks how AI and autonomy are (and have
been) used in nuclear weapon systems thus far and what implications their use may
have. But the chapter also addresses the question of which future applications of AI
and what levels of autonomy in those systems are conceivable or considered likely.
Artificial intelligence is referred to here in its narrow application. It is defined as a
“wide set of computational techniques that allow computers and robots to solve
complex, seemingly abstract problems that had previously yielded only to human
cognition” (Boulanin, 2019). As a subfield of AI, machine learning (ML) is under-
stood as “an approach to software development that first builds systems that can
learn and then teaches them what to do using a variety of methods” (ibid.). However,
machine learning cannot be compared with the human cognitive process. Instead,
ML-based systems learn by finding statistical relationships in data. The biggest
advantage of learning machines is thus that, once developed, they reduce the need
for human programming (depending on how capable the systems are and which
approach to learning they use) (Horowitz et al., 2019; Scharre and Horowitz 2018).
Autonomy, finally, is understood as the “ability of a machine to execute a task, or
tasks, without human input, using interactions computer programming with the
environment” (Boulanin & Verbruggen, 2017). AI, and in particular ML, are
enablers for increasing autonomy. Without the potential of AI (such as increased

1Allegedly, Russia commenced underwater tests in 2018 or early 2019 (Gady, 2019a, 2019b).
2Russia also announced a new generation of strategic bombers (to be introduced by 2040), which
will be uncrewed (Atherton, 2020).



processing power, improvement of sensors and image recognition) to enhance
machine perception, autonomy would not be possible. Autonomy can thus be
regarded as a “by-product” (Boulanin, 2019) of scientific advances in AI.
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The best approach appears to be to assess the possible benefits and dangers of
integrating AI or autonomy in nuclear weapon systems with a degree of skeptical
caution. Do qualitative improvements make nuclear weapons more secure, or more
unreliable, unstable and unpredictable instead? Do technological advances increase
the risks of nuclear weapons use or can they help prevent nuclear war? Given the
inherent ambivalence of new technologies, it is difficult to give a simple answer to
these questions. The same technology that could increase advance warning time
could lead to more complex decision cycles and shorter reaction times in crises. On
the one hand, the use of AI could contribute to the development of more effective
verification systems for monitoring nuclear nonproliferation and disarmament, but it
also creates its own verification problems. These questions require in-depth research,
which is, however, still in its infancy. To date, the limited scientific literature
available mainly focuses on possible impacts of new technologies on nuclear
stability, on the current or future capabilities of nuclear weapon systems, and on
potential risks that are associated with the use of AI or autonomy in nuclear weapon
systems. Yet, this approach in addressing AI and autonomy ignores possible contri-
butions AI or autonomy can make to nuclear arms control, especially with regard to
efforts to promote nonproliferation and disarmament. AI could well extend the range
of verification instruments available for nuclear arms control, disarmament and
nonproliferation.

When navigating the field of nuclear weapons and new technologies, assumptions
are frequently made which will be examined in more detail below:

1. The use of AI and autonomy in nuclear weapon systems is not a new phenom-
enon. Applications of early AI and (semi)automatic systems were already
deployed during the Cold War (Borrie, 2019).

2. Advances in AI and increasing integration of AI and autonomy in nuclear weapon
systems can cut both ways. They can potentially lead to disruptive changes in
military operations and warfare. Then again, AI could, if handled carefully, make
nuclear weapon systems safer and more dependable by minimizing the risk of
human failure (Boulanin, 2019).

3. The use of AI or autonomy in conventional weapon systems can be potentially
more problematic and destabilizing than applications of AI in nuclear weapons; it
could reduce strategic stability by challenging second-strike capabilities and
lowering the threshold for the use of nuclear weapons (Horowitz et al., 2019).

4. The possible disruptive influence of AI and autonomy on nuclear warfare
depends as much on technological factors as on psychological factors, such as
confidence in new technologies or one’s own capabilities as well as perceptions
of an opponent’s capabilities and intentions (Geist & Lohn, 2018).

5. The increasing capabilities of AI could contribute to the development of new and
more reliable instruments for nuclear arms control and verification. However, the
effectiveness of such systems relies on political will; AI-enhanced verification
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alone will not be insurance against treaty violations (Kaspersen & King, 2019;
Lück, 2019).

2 AI in Nuclear Weapon Systems

Historically, both the US and the USSR used “first-wave” AI—such as so-called
“expert” systems3 and automation to gain the upper hand in the Cold War and to
ensure the survivability and thus retaliatory capability of their nuclear forces
(Horowitz et al., 2019). Even then considerable effort was made to ensure that
nuclear weapon systems and nuclear command and control would not operate
without human supervision. Nuclear decision-makers in the US and USSR were
“deeply aware that, when dealing with something as tightly-coupled, complex and
potentially hazardous as nuclear command and control, machine-based systems face
real limits that require meaningful human control and supervision” (Borrie, 2019).
Automation was used in communication systems to enable automated broadcast
networks to transmit emergency action messages in the event of nuclear attacks or
for automated retargeting (Horowitz et al., 2019). Early AI was also used to develop
and maintain the capability of nuclear powers to respond to nuclear attacks.
Semiautomated ‘dead-hand’ systems (such as the Soviet Union’s “Perimeter” sys-
tem4) should only be activated in exceptional cases when a decapitating attack on
nuclear command and control occurred (Klare, 2020; Boulanin et al., 2020). Auto-
mation proved to be dangerous even though nuclear command and control largely
remained under human supervision during the Cold War. In 1983 a Soviet early
warning system reported incoming US intercontinental ballistic missiles with
“highest” confidence. The system triggered an automated alert and call for retalia-
tion—but the launch order still had to be activated by a human operator. The Soviet
Lieutenant Colonel in charge, Stanislav Petrov, however, reported a system mal-
function and ignored the counter-attack order, thereby preventing a nuclear confron-
tation (Topychkanov, 2019). The Stanislav-Petrov incident illustrates the potential
destructive power of automation when paired with nuclear weapons. It also explains
why “nuclear-armed states have historically limited the role of automation in nuclear
launch platforms so that humans retain positive control over nuclear targeting and
strike initiation” (Horowitz et al., 2019). Premature reliance on unstable or untested
technology for the most destructive weapons ever invented could indeed lead to

3Expert systems are automated and/or semiautomated systems that follow a solely rule-based
decision- making logic (if-then) (Horowitz et al., 2019). They differ from autonomous systems
inasmuch as they do not have the capability to develop “and select from different courses of action
to accomplish goals based on [their] knowledge and understanding of the world” (Boulanin &
Verbruggen, 2017).
4The Soviet/Russian Perimeter system is said to be still (or rather back) in operation (Topychkanov,
2019).



horror scenarios such as falsely launched nuclear missiles, with the plausible con-
sequence of nuclear responses and counterresponses.
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2.1 Qualitative Improvements in Nuclear Weapon Systems

The Stanislav-Petrov incident exemplifies the dark side of (semi)automated nuclear
command and control and the two sides of the coin inherent in using AI in nuclear
weapon systems. This section aims to draw a clear(er) picture of how the use of AI or
autonomy in nuclear weapon systems can change the field for better or worse. The
perils and benefits associated with the use of AI or autonomy in nuclear weapons
generally depend on the area of application: the use of AI could qualitatively
improve threat detection and early warning systems, make nuclear command, control
and communication (NC3) more reliable, and lead to greater accuracy in missile and
guidance systems. In terms of nuclear strategy, the use of autonomy in nuclear
launch platforms and delivery systems holds the promise of gaining new military
advantages. On the other hand, even more than in the conventional field, it is
essential that AI applications in nuclear weapon systems function without error, as
any miscalculations would have greater repercussions than with conventional
weapons. The two-edged sword of emerging technologies can cut deeper when
coupled with the unique destructiveness of nuclear weapons.

AI could enhance detection and sensory capabilities, including those of early
warning systems, thus reducing the risks of false positives. AI and, in particular,
machine learning (ML) could accelerate the identification of threats in complex
environments. What is more, AI and ML may give early warning systems greater
perceptual intelligence for identifying signals or objects and situations of interest,
such as mobile nuclear launchers or unusual troop movements (Cuihong, 2019;
Horowitz et al., 2019). By facilitating the processing and analysis of big sets of data
AI could help improve predictive models of the production, commissioning, deploy-
ment or use of nuclear weapons (Boulanin, 2019). The same applies to intelligence,
surveillance and reconnaissance (ISR) data (Verbruggen, 2020). AI and increasing
autonomy could allow the analysis of “large swaths of data quickly for anomalous
behavior at a scale and speed that would not be possible with human analysts”
(Horowitz et al., 2019). The use of machine learning to train early warning systems
with additional data could lead to greater situational awareness and further reduce
risks of false alarms, accidents or accidental use (Cuihong, 2019; Verbruggen,
2020). In the case of indicators of incoming nuclear strikes, increased system
speed resulting from the inclusion of AI and a greater degree of autonomy in early
warning or detection systems (i.e., faster response times) could, in the future, leave
more room for reaction and for interpretation of data, as well as time to check for
false positives (Klare, 2020). This is of particular importance in the nuclear realm, as
the inadvertent use of nuclear weapons due to false alarms or time pressure is one of
the most likely catalysts for nuclear war.
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The inclusion of AI could not only help reduce risks of miscalculation and
inadvertent escalation, but also help strengthen the protection of NC3 systems,
increase combat readiness and optimize resource management (Boulanin, 2018;
Gompert & Libicki, 2019). In terms of communication, AI and particularly auton-
omy could improve the ability of NC3 systems to transmit decisions faster and more
efficiently and thus allow for more careful and rigid execution of launch orders
(Horowitz et al., 2019). In the future, AI and increased autonomy could also help
maintain communications in unstable environments or hazardous situations
(Horowitz et al., 2019). This is most pertinent with regard to navigation and control
of nuclear-capable submarines but could also extend to missions in degraded
environments such as after nuclear weapons use. Finally, AI could boost qualitative
improvements in nuclear delivery systems, in particular with regard to targeting.
Image processing enhanced by ML could accelerate (and improve) the detection of
relevant targets, their exact location and most vulnerable parts and thus optimize
how warheads are allocated (Stefanovich, 2020).5 While this could give attackers a
strategic advantage, it would also increase the speed of escalation and lower the
threshold for nuclear use.

More potent than these qualitative improvements of nuclear delivery systems
could be a greater degree of autonomy of nuclear launch platforms and delivery
vehicles. What is increasingly normal in the conventional area is about to follow in
the nuclear field: weaponized uncrewed aerial or underwater vehicles (UAV/UUV)
which would then, potentially, be nuclear-armed (such as Russia’s Poseidon or the
US’s new Stealth Bomber).6 Some strategic advantages of greater autonomy of
nuclear launch platforms and delivery vehicles (i.e. the ability to autonomously
launch, select and attack targets, but also to autonomously engage in ISR operations)
are quite obvious: it would allow for extended endurance, greater reach and use in
hardly accessible areas and contested (air-)spaces, greater persistence, greater mass
(e.g. through swarming), and the recoverability of weapon systems (Boulanin,
2019). Yet, autonomy extends beyond the notion of nuclear “killer robots.” As the
Cold War has shown, automated or largely autonomous strategic response systems
can be appealing to nuclear powers—particularly, when their deterrent value is in
doubt. Dead-hand systems would enable a nuclear response even if NC3 were
interrupted after a possible nuclear strike; autonomy would give dead-hand systems
more perceptual intelligence to detect, analyze, and react to such situations. Some
experts assert that a high degree of autonomy in NC3 could, in the future, secure
communications even in the most degraded environments (e.g., Boulanin et al.,

5Image recognition through ML has made great progress in recent years but is still unreliable and
can easily be exploited (Sayler, 2019). Until these deficiencies are overcome, it is doubtful whether
the military would rely on systems supported by image recognition such as automated target
recognition, at least when it comes to nuclear weapons.
6This development has long been anticipated: The Missile Technology Control Regime (MTCR),
established in 1987, has treated drones restrictively, primarily because they could be potential
candidates as delivery systems for nuclear weapons and other weapons of mass destruction
(Schörnig, 2018).



2020; Horowitz et al., 2019). However, it would also make NC3 systems more
susceptible to external interference or internal malfunctions.
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At present it seems out of the question that an autonomous Skynet-like
superintelligent system with final authority (and independent decision-making
power) over nuclear weapons will ever be developed. Yet, even at a lower level,
decision-makers seem to be hesitant to allow a greater degree of autonomy in nuclear
weapon systems, at least when it comes to nuclear command and control (Freedberg,
2019).7 This includes the use of UAVs or UUVs as launch platforms for nuclear
warheads—the ultimate decision-making power will remain with human operators
for now, or to put it in everyday language: there will always be a “human-in-the-
loop.” The picture is different when it comes to protecting critical infrastructure, for
example in terms of cyber defense or the physical protection of launch platforms, or
conducting difficult ISR missions (Boulanin et al., 2020). Here, decision-makers
may be considerably more willing to include autonomy.

2.2 The Other (Dark) Side of the Coin

Most risks that are associated with the use of AI or autonomy in nuclear weapon
systems are inherent qualities of emerging technologies: opacity, brittleness and
external vulnerability, as well as possible biases in data sets that could affect the
reliability of nuclear weapon systems (Horowitz et al., 2019). The use of algorithms
could render systems more opaque to their operators. The resulting trust gap (i.e., the
preference for human decision-making over technology that is seen as unreliable)
could lead to a failure of human-machine interaction (ibid.). It is sometimes
suggested that the destructiveness of nuclear weapons induces natural skepticism
about a high degree of technologization. However, the opposite of the trust gap (i.e.,
the automation bias) could be equally problematic in cases where human operators
display blind faith in the supposedly superior capabilities of a machine or algorithm,
treating “the AI system’s suggestions as on par with or better than those of human
advisers” (Geist & Lohn, 2018). This could be particularly dangerous with regard to
early warning or decision-support systems. In some cases, as the Stanislav-Petrov
incident exemplifies, a healthy level of mistrust of technology can prove valuable. In
other cases, a disregard for AI-supported decisions could jeopardize possible bene-
fits of emerging technologies—such as improved situational awareness. Addition-
ally, the immaturity of AI technology could lead to safety and reliability problems
(Klare, 2020). There is uncertainty about the predictability and dependability of
AI-supported systems due to a lack of transparency with regard to the algorithms

7In an interview, Lt. Gen. Jack Shanahan, director of the Joint Artificial Intelligence Center (JAIC),
emphasized the US military’s skepticism about integrating AI in NC3 systems: “You will find no
stronger proponent of integration of AI capabilities writ large into the Department of Defense, but
there is one area where I pause, and it has to do with nuclear command and control” (Freedberg,
2019).



used. Decisions (or suggestions) by AI-supported systems can be opaque and
incomprehensible to human operators. Indeed, AI (particularly ML) works like a
black box that obscures the way “a system came to a certain conclusion (. . .) Once
the operation of AI systems is triggered, humans are unable to monitor the systems’
decision calculus in real time” (Fitzpatrick, 2019). The potential unpredictability of
AI-supported systems also makes situational assessments more difficult. This could
encourage misjudgments that would be particularly dangerous during nuclear
confrontations.
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AI-supported systems still lack the flexibility of humans to react to events in
broader contexts or to unforeseen incidents (Horowitz et al., 2019; Klare, 2020).
While ML could be helpful in some parts of the nuclear enterprise (e.g., detection of
anomalies in large data sets), it may prove hard to take advantage of it in many
others. Since nuclear weapons have only been used twice—in Hiroshima and
Nagasaki in 1945—there is simply not sufficient data to create stable early warning
or threat-detection systems, nor data on the performance of these very systems in
crises. Ensuing data biases could indeed render the possibility of nuclear confronta-
tion more likely when nuclear risks are overestimated (or underestimated) due to the
lack of appropriate data. As a result, “[n]uclear-armed states would have to crack
difficult testing issues associated with the design of these systems to be confident that
they can be used in a predictable and reliable manner and be certified for use”
(Boulanin, 2018). Just as problematic as insufficient data are data biases that are
unintentionally introduced into AI-based systems through their learning processes
(United Nations Institute for Disarmament Research, 2018). As algorithms and data
selection for AI systems and ML are dependent on human definition, pre-existing
and implicitly held beliefs may be reflected in both algorithms and training data
(Fitzpatrick, 2019)—a case of “you only hear what you want to hear.” The proba-
bility of an AI-based early warning system delivering a false positive could increase,
for instance, if the system were fed with data reproducing the belief that opponents
will indiscriminately carry out nuclear strikes in conflicts without compunction.

Finally, the brittleness and vulnerability of AI-supported and autonomous sys-
tems can be critical. The capabilities offered by emerging technologies could be
exploited by cyberattacks, jamming, or hacking. Data could be intentionally “poi-
soned” by skilled (and malevolent) actors to deceive, disrupt or impair NC3 systems
(Fitzpatrick, 2019; Klare, 2020). If the exact ways in which machines learn remain
black boxes, detecting the exact location of poisoned data also remains difficult.
Furthermore, targeted disinformation—such as deep fakes created by capable AI—
could be used to either fool human operators or to manipulate decision-making at the
height of conflicts, possibly resulting in misjudgments and inadvertent nuclear
weapons use (Sauer, 2019). As matters stand now, the greater the dependence on
AI, the greater the possibility of critical interference.8 Fortunately, the destructive
potential of nuclear weapons currently seems to be inducing caution in military

8So far, the nuclear powers have tried to reduce these perils: Reportedly, the US nuclear forces are
still coordinated via floppy disks to minimise the risks associated with the increasing



professionals and “a strong organizational bias towards maintaining positive human
control over nuclear weapons is likely to mitigate against any risks” (Horowitz et al.,
2019). With good reason: Inadvertent use of nuclear weapons would (most likely)
entail the severest consequences and would (almost certainly) result in the death of
millions of people. Thus, it is not surprising that the nuclear field is renowned for its
conservativeness and has a record for only slowly integrating new technologies.
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2.3 The Nuclear-Conventional Nexus and Nuclear
Psychology

Many observers consider the developments and increasing inclusion of AI in
conventional weapon systems to be more dangerous in terms of nuclear stability
than the use of AI in nuclear weapon systems. The qualitative improvement of
conventional weapons through the use of AI or a greater degree of autonomy
could jeopardize nuclear second-strike capabilities or the survivability of nuclear
forces. Enhanced accuracy could make targets that were previously reserved for
nuclear strikes (such as hardened silos for intercontinental ballistic missiles) vulner-
able to high-precision conventional weapons (Cuihong, 2019; Verbruggen, 2020).
Remote sensing, improved satellite imagery and systematic scanning of ISR data
could render mobile missile launchers or sea-based deterrence useless (Cuihong,
2019), for example, by being located and thus potentially exposed to a crippling first
strike. Moreover, the thought of having superior capability could lead to riskier
strategies. In turn, the fear that an adversary might undermine your own deterrent
(or might to do so in the future) could encourage the premature use of nuclear
weapons or the equipping of nuclear weapons systems with AI components that have
not been properly tested. Furthermore, technological and strategic advances in drone
warfare—most importantly swarming—pose a challenge to missile defense systems.
In order to compensate for its (at least quantitative) nuclear inferiority, China
especially is investing in research on drone swarms that could counter US missile
defense in Asia (Saalman, 2019). Not only the higher accuracy (or mass), but also
the sheer speed of AI-enhanced or autonomous conventional weapons—both in
terms of processing power and physical speed—could increase the risk of nuclear
deployment. High-speed weapons such as hypersonic gliders or fully autonomous
weapon systems leave little room for deliberate and careful decision-making or
de-escalation (Klare, 2020). In order to prevent attacks on their nuclear deterrent,
states that doubt the viability of their second-strike capabilities could resort to risky
strategies such as putting nuclear weapons on hair-trigger alert (Horowitz et al.,
2019). The convergence of nuclear and conventional systems (paired with the
increasing speed and accuracy of conventional weapons) poses yet another problem

interconnectedness of their systems (Mangan, 2016) although the US is currently in the process of
modernising its information and communications technology (Boulanin et al., 2020, p. 21).



(Klare, 2020). In time-critical situations, a non-nuclear-armed strike from a weapons
platform that is capable of launching both nuclear and conventional attacks could
potentially be misinterpreted as a nuclear first strike (Gompert & Libicki, 2019).
Such scenario may easily result in nuclear retaliation.
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The risks associated with the use of AI or autonomy in nuclear weapon systems
depend not only on technological capabilities and advances, but also on cognition
and the assessment of an adversary’s capabilities (Geist & Lohn, 2018). The
psychological influence of AI on nuclear strategy is closely linked to the ambiguity
of the actual potential of new technologies as well as the lack of transparency about
the efforts of nuclear-weapon states to incorporate AI and autonomy into their
nuclear weapon systems. Uncertainty about their own technological abilities in
comparison with those of others could cast doubt on second-strike capability.
Technological pressure (or the “need to catch up”) may lead to qualitative arms
races and further crisis instability if nascent technology is deployed without testing.
Misperceptions about an opponents’ capabilities or intentions and resulting mis-
calculations under conditions of urgency and ambiguity may trigger nuclear escala-
tion (Gompert & Libicki, 2019). Furthermore, implicit assumptions concerning the
intentions of other states could be built into nuclear weapon systems through
software codes and data input. AI, seemingly a rational and objective trusted adviser
(Geist & Lohn, 2018), could then fall prey to human biases—and thus reproduce and
reinforce pre-existing beliefs that would be reflected in the behavior of AI-based
early warning systems or decision-support programs.

In terms of nuclear strategy, the further integration of new technologies into
nuclear weapon systems could be particularly attractive to less powerful states
(Horowitz et al., 2019). Suspicions concerning the adoption of new AI capabilities
by other nuclear-weapon states might lead states to resort to destabilizing measures if
they believed that their retaliatory capability were weakened. These destabilizing
measures could include further efforts to modernize nuclear arsenals (by including
AI or increasing the autonomization of nuclear forces), but also to abandon no-first-
use policies, raise the alert statuses of nuclear forces, and further automate nuclear
launch policies (Boulanin, 2018; Geist & Lohn, 2018). In addition to the thwarting
of nuclear-weapon states’ deterrent and second-strike capabilities, this may ulti-
mately weaken the nuclear taboo9 and thus render the use of nuclear weapons more
likely. Given the cloudiness of the nuclear field and the myths surrounding the
capabilities of (AI-)enhanced nuclear weapons, states are dependent on (sometimes
imprecise) intelligence and their own assessment of what (other) nuclear-weapon
states can do or have (or might have in the future). Yet, “[t]hat is where the inherent
nature of AI technology becomes a major problem: the fact that it is software-based
makes tangible evaluation of military capabilities difficult. Nuclear-armed states

9The nuclear taboo or the tradition of ‘non-use’ of nuclear weapons refers to the existence of a norm
on the prohibition of nuclear weapons use, which has effectively prevented states from using
nuclear weapons since WW2 (Tannenwald, 1999).



could therefore easily misperceive their adversaries’ capabilities and intentions”
(Boulanin, 2019).
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3 Opportunities for Nuclear Verification

The use of AI—and its perceived capabilities—could not only threaten but also
enhance nuclear stability. It could equally well provide nuclear-weapon states with
better information and better decision-making tools for time-critical situations, or it
could reduce the risk of miscalculation and accidental escalation. The main prereq-
uisite for the beneficial use of AI is transparency about the actual capabilities of
AI-enhanced systems and the intentions with which AI and autonomy are used in
nuclear weapon systems. Mutual misperceptions of each other’s (technological)
potentials and resulting arms spirals could lead to unintended nuclear use. For this
reason, political and military leaders should continue to regard AI-enhanced weapon
systems with caution, as the premature adoption of insufficiently tested systems
could have serious consequences. Another condition for the use of AI in nuclear
verification is that it must not make attacks easier, for instance by revealing the
existence or location of mobile launchers or a sea-based deterrent.

Importantly, the use of AI also generates new opportunities for the arms control
community to monitor nuclear weapon-related developments and conduct verifica-
tion operations (Kaspersen & King, 2019). A future is imaginable with not only
technologically enhanced nuclear weapons but also with improved verification
systems that help monitor nuclear nonproliferation, nuclear disarmament or numer-
ical and weapon-related restrictions. Nuclear verification largely relies on the inter-
pretation and evaluation of large sets of data. Hence, AI could contribute to verifying
nuclear disarmament, for instance with regard to the detection and characterization
of nuclear material, while it could support the exposure of clandestine nuclear
proliferation through enhanced data processing and pattern recognition (Exline,
2020; International Atomic Energy Agency-IAEA, 2017; Patton et al., 2016). By
supporting pattern recognition or by filtering out unusual movements or develop-
ments, AI could help improve the cross-analysis of ISR data, for example to help
monitor observance of treaty declarations. Existing and previous nuclear arms
control treaties are largely based on telemetry, (satellite) surveillance of declared
facilities, and data exchange. Improved satellite imagery could provide better infor-
mation on troop movements and missile deployment or with regard to weapon-
specific, numerical or local restrictions (such as those that were laid down in the
1987 INF (Intermediate-Range Nuclear Forces) Treaty for short-/mid-range and
cruise missiles). It could also contribute to monitoring or detecting the transforma-
tion of nuclear sites or nuclear weapons silos (Boulanin, 2019; Lück, 2019; Patton
et al., 2016). Even now, the US is reported to be developing improved satellite
imagery capacities that will enable it to detect mobile (nuclear-capable) missile
launchers (Stewart, 2018). Such technology could easily be used for treaty verifica-
tion. Autonomy, on the other hand, could prove helpful in screening observance of



treaties, especially in inhospitable environments such as the deep sea. In such areas,
higher levels of autonomy in monitoring systems (and surveillance vehicles) could
enable sensing operations in remote spaces too (Boulanin, 2018). However, the use
of AI in verification systems must be carefully balanced. Verification systems should
not be designed to potentially make attacks easier, as this would both contradict the
very idea of verification as a stabilization of military relations and reduce the
political will to contribute to such systems. Here, a principled tension arises between
the use of AI for verification of nuclear arms control and for verification of
nonproliferation and disarmament. While in the former case real-time location
information (e.g., to detect launch platforms) would have to be avoided to prevent
competitive advantages for one side and to ensure stability between the parties
concerned, this data could improve treaty verification when it comes to nuclear
nonproliferation or disarmament.
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With regard to the prevention of nuclear proliferation, AI could contribute to the
detection of enrichment activities and the search for evidence of the concealment of
facilities. The analysis of satellite imagery is already an important part of nuclear
nonproliferation endeavors (Niemeyer & Ruthkowski, 2016). AI could be helpful in
the analysis of large quantities of satellite imagery: it could be used to measure the
intensity of use, energy production and distribution in declared facilities by moni-
toring temperature or optical differences and to screen for possible modifications of
these facilities. Furthermore, improved image recognition and processing through AI
could advance the detection and classification of (undeclared) nuclear facilities such
as uranium mills (Exline, 2020; Patton et al., 2016). Proliferation threats can also be
identified through the analysis of trade data (for example import and export decla-
rations) “to look for indications of technology transfers related to nuclear weapons
production, or for transfers involving entities linked to such production” (FAS,
2017). This would be facilitated by AI as it would no longer need to be done
manually. The same applies to the tracking and analysis of proliferation networks
(Exline, 2020). The IAEA is exploring ways of including AI in its safeguard
verification regime (IAEA, 2020). This is most promising in terms of data processing
or the use of enhanced satellite imagery. AI and ML could improve existing
approaches to material accountancy, the screening of technical data (or the search
for anomalies in technical data) or image recognition that is needed to monitor
nuclear facilities (Rockwood et al., 2019). However, the use of AI cannot (currently)
replace or even eliminate the need for manual work such as the tagging of verified
material or instruments.

As impressive as the benefits of using AI and autonomy in nuclear weapon
systems can be, the improvement of nuclear verification tools through new technol-
ogies is equally appealing. However, the verification of nuclear arms control or
nuclear disarmament is and has always been a highly politicized issue. In the past,
potential technological advancements have been rejected on political grounds—in
cases where the technology was perceived as too intrusive (Lück, 2019). The field of
nuclear disarmament verification is particularly delicate in this respect. The verifi-
cation of nuclear disarmament has to contend with potential knowledge gaps—
nuclear-weapon states will most probably not allow algorithms to help verify



disarmament obligations or allow non-nuclear weapon states to participate in disar-
mament endeavors if these systems are vulnerable to the proliferation of nuclear
knowledge. As with the use of AI in nuclear weapon systems, verification systems
based on AI technology may be vulnerable to technological intrusion. Hacking,
jamming or deep fakes could be employed to disguise treaty violations; (training)
data could be deliberately manipulated to restrict the operability of verification
systems. The potential vulnerability of AI to these deficiencies makes its use in
nuclear weapons verification possible only when supplemented by other verification
instruments or human control (IAEA, 2017). Finally, the use of AI can not only
improve existing verification tools but can also cause verification problems.
AI-enhanced systems or autonomy raise accountability issues: in the future, who
will be responsible for nuclear attacks—politicians or autonomous decision-support
systems? Questions such as who assumes the liability for nuclear risks, but also of
how to verify software codes of AI-enhanced or autonomous nuclear weapons or
how to ensure a minimum level of stability and safety, are not unique to the use of AI
in nuclear weapons. However, these problems are exacerbated by the sheer destruc-
tiveness of such weapons.
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4 Advanced Wonder Weapon or Doomsday Machine?

The inclusion of AI and autonomy in nuclear weapon systems can indeed be a
two-edged sword. New technology is not dangerous in itself. However, in the face of
recurrent nuclear confrontation and the looming threat of a multilateral nuclear arms
races, the use of AI and autonomy in nuclear weapon systems could prove to be the
opening mechanism for a (nuclear) Pandora’s box. Faster and more complex deci-
sion cycles, shorter reaction times in crises, and new first-strike advantages could
shake up traditional strategic planning of nuclear warfare and military operations. In
such scenarios, governments and military could underestimate or disregard the
limitations of current technology when confronted with a perceived strategic imbal-
ance. The hasty inclusion of AI technology in nuclear weapon systems could
aggravate already existing risks and provoke a qualitative as well as a quantitative
nuclear arms race. However, a technological arms race in the nuclear realm could be
hazardous: “racing blindly down the path toward ‘smarter’ weapons, with nuclear
risks remaining as inadequately addressed as they are now, might well turn the
military applications of AI and machine learning into a shortcut to Armageddon”
(Sauer, 2019). Then again, better satellite technology, image processing and the
possibility of examining even larger sets of data could make nuclear weapon systems
more reliable, increase crisis awareness and contribute to the development of new
and more dependable instruments for nuclear arms control and verification.

It is important for us to understand better what possibilities exist. Discussions of
the benefits and perils of nuclear applications of AI, the (qualitative) modernization
of nuclear weapons arsenals, and the impact of technological advances on nuclear
strategy are still at a fledgling stage. In order to deepen this discussion, it is necessary



to explore which kinds of technology states are developing, what they already have
and what they are planning. This discussion should not be restricted to academic
circles; it has to include a dialogue among those states that are increasing the use of
AI in nuclear weapon systems: “States need to not only develop and [gain a] better
understanding [of] the opportunities and challenges posed by the military use of AI,
particularly in the nuclear force-related context; they also need to discuss these with
other states” (Boulanin, 2019). Furthermore, tailored arms control endeavors are
necessary in order to reduce the risks associated with the use of new technologies in
nuclear weapon systems. This could include both confidence-building measures and
dialogue on the technical security of the use of AI or autonomy in nuclear weapon
systems to mitigate against accidental use, false negatives (or positives) or mis-
calculations. Transparency on the actual capabilities of emerging technologies in the
nuclear field could reduce some of the risks associated with AI, since assessing an
opponents’ capabilities is a highly psychological act. This means that perceptions of
what AI-enhanced weapon systems could do can have just as many concrete effects
as the actual capability of those very weapons—even (or especially) if what is
imagined reaches far beyond reality. Transparency in military planning with regard
to nuclear applications of AI is only one step; avoiding the entanglement of nuclear
and conventional systems is another. The more conventional weapon systems are
enhanced with both AI and possibly nuclear firepower, the greater the risk of
inadvertent nuclear escalation. Generally, appropriate risk reduction measures in
the nuclear field do not change just because AI is involved. More transparency on
nuclear doctrines, more defensive nuclear doctrines, lower alert status, and no-first-
use policies are essential for keeping the risk of nuclear use as low as possible. If
anything, these measures are all the more important the more nuclear-weapon states
rely on AI-based systems, as any weakening of the nuclear taboo could have
devastating consequences.
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Finally, we need more research on the prospects of AI in nuclear disarmament,
arms control, and nonproliferation verification. Currently, most research in the
nuclear field focuses on the benefits and dangers of including AI in nuclear weapon
systems and not on its more “friendly” applications. While the IAEA announced that
it would carry out research on how to incorporate AI and ML into its safeguard
verification regime, this work seems to be progressing only slowly. Nevertheless,
this very area would be a good opportunity for non-nuclear-weapon states to become
involved and not leave discourse about the nuclear field only to nuclear-weapon
states.
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AI, WMD and Arms Control: The Case
of Nuclear Testing

Anna Heise

Abstract Although actual nuclear tests have decreased considerably in recent
decades, this weapon technology still exerts a great attraction. However, advances
in the simulation of nuclear detonations, the increased use of AI to predict their
effects, and AI-assisted improvements in the analysis of the vast amounts of nuclear
test data are threatening this trend. At the same time, however, AI also offers the
possibility of significantly improving existing ways of deducing tests based on
seismic information or the measurement of radionuclides, and of making predictions
or estimates based on incomplete data. The chapter addresses these developments
and challenges and analyses the technical as well as organizational and structural
changes for nuclear weapons testing, but also their containment, control and mon-
itoring that could result.

1 The Nuclear Testing Status Quo

Over the past decades, the number of nuclear tests performed by various states has
plummeted from several events per week (1980s) to approximately one per year
(2006–2018, North Korea) to none at present. This was achieved mostly by multi-
lateral treaties which initially banned nuclear explosions in the atmosphere, outer
space and under water—the Partial Test Ban Treaty (PTBT) (Treaty Banning
Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water,
1963)—and later prohibited testing completely—the Comprehensive Test Ban
Treaty (CTBT) (Comprehensive Nuclear Test-Ban Treaty, 1996). Still, nuclear
testing remains a threat, firstly to the environment and secondly as a tremendous
proliferation risk because the testing of a nuclear device is crucial for its possible use.
In this paper, we will evaluate possible future developments in nuclear testing in our
technical era with regard to the use of artificial intelligence (AI). We will discuss
changes in the data processing of nuclear tests and its verification and the question of
whether this new method for simulating tests might increase the risk of proliferation.
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2 Application of AI in Nuclear Testing

AI—especially in the context of lethal autonomous weapon systems—is sometimes
referred to as the third revolution in military technology, after gunpowder and
nuclear weapons (Russell et al., 2015). While its application varies across a wide
spectrum from language processing to deep learning and robotics, most important in
the context of nuclear tests is machine learning (ML). For nuclear testing, all three
major types of ML—regression, classification and clustering—can be applied in data
analysis. Monitoring stations that are operated under the CTBT gather a huge
amount of information. This data needs to be sorted, reduced, and categorized so
signals from nuclear and from other events can eventually be distinguished. Another
possible application of AI for nuclear testing is robotics, where a possible use case
could be the collection of field samples of possibly contaminated air or ground
samples, for instance by AI-enabled drones or small vehicles. The vehicles could
either be used for reconnaissance and verification operations after the testing of a
nuclear device or by the testing party itself, since it allows data gathering in what are
probably highly inaccessible areas at the test site. These different aspects—with a
focus on ML—and their different applications will be discussed in detail in the
following sections.

2.1 AI and Virtual Testing

The first nuclear weapon detonation took place in the race for military dominance
and was based on experimental engineering rather than code-based simulations.
Almost 20 years later, following the PTBT, nuclear tests by the signature states
went underground in 1963. In the United States (US), nuclear tests finally halted
indefinitely in 1992 and for scientists working at the National Laboratories the
CTBT ended a way of life. McNamara (2001, p. 114) writes: “The design and test
cycle acted as an engine for the ongoing integration of expertise and the social
reproduction of the weapons community; indeed, experimental activity was critical
in organizing social relations among the hundreds of staff members involved in
weapons work at Los Alamos.” This highlights the importance of the human factor,
which has been at center stage in earlier phases of developing and maintaining
nuclear weapons. The abandoned testing regime was followed by the Stockpile
Stewardship Program (SSP), with its main focus on maintaining the US nuclear
arsenal (Gordin et al., 2005) without actually detonating a device. As part of the SSP,
various facilities at different sites carry out different tasks. For instance, the Dual-
Axis Radiographic Hydrotest Facility (DARHT) performs subcritical tests by using
x-rays to understand the implosion process in a nuclear bomb in three dimensions.
ATLAS (Advanced Tracking Laser Alignment System) at the US National Ignition
Facility (NIF) has the objective of inducing nuclear fission by compression of
hydrogen fuel with lasers. The Accelerated Strategic Computing Initiative (ASCI)



is a program for replacing old supercomputers with parallel computing systems to
change from two- to three-dimensional codes (Gordin et al., 2005). The transition
from experimental testing to simulation began in the early 1990s and lasted until the
turn of the century.
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This change from real-life explosions to computer simulations brought new
challenges for the programmers: Suppose that the explosion yielded several percent
less power than predicted by the model. If the developers understood the underlying
mistake they would of course adapt the physical model, but if this was not the case
they inserted a factor (called a fudge factor or knob) to bring the model into
agreement with the experimental data (Gordin et al., 2005). Sometimes these code
adjustments are the product of the developers’ intuition and not based on under-
standing the underlying physics. This makes the theoretical, computer-based
approach complicated, since it is still highly reliant on the human expert. These
circumstances led to a different kind of nuclear pedagogy in the training of future
nuclear engineers today (Gordin et al., 2005). The procedure is similar to the
learning processes of AI, which indicates that the future engineer might as well be
replaced with a ML algorithm. According to Baker (1997): “As a nuclear weapons
designer I learned the limitations of simulations and the humility that comes with the
failure of a nuclear test.”

Computer calculations, regardless of how good or fast the computer is, are only as
good as the data and models you give them and the knowledge and experience of the
person doing the calculations. Even today no computers are big enough or fast
enough to simulate all that goes on when a nuclear weapon explodes. True under-
standing of and experience with the limitations of calculations came from under-
standing the differences between calculations and experiments, including nuclear
tests. The general shift from human operator-based experimental tests to computer-
driven virtual testing means not only a change in method but also in a shift in the
work culture and, as a result, is rejected by some (especially older-generation nuclear
weapons designers). Future developments in the use of AI in the context of simulated
nuclear testing will thus not only be dependent on the technology but on the attitude
of those in charge of change. One of the main reasons for extensive nuclear testing in
the past was the immediate impression this demonstration of military power made on
opponent states. Since virtual testing is kept secret, its only purpose is to serve
scientific and engineering interests. The data gathered in test explosions is highly
confidential and any leakage of knowledge is considered a major threat.

With this shift from experimental to virtual testing, which includes different AI
mechanisms, it might be asked whether virtual testing based on AI is easier. The cost
of nuclear weapons research and development in the US is higher at present than it
was during the Cold War (when the stockpile was larger and nuclear tests more
frequent). A major part of the budget is spent on expensive simulation technology,
which is used to simulate components of nuclear weapons. Another aspect is less
scientific but might be the most important: the fact that simulating a nuclear
explosion is an abstract endeavor. Researchers reported a considerable loss of
excitement and thrill when nuclear tests stopped being conducted above ground
and were taken underground. This connection between event and action is even



further weakened by a theoretical simulation without any actual explosion. Suc-
cesses with virtual testing based on AI will further increase this gap as well as the
already existing absence of any ethical considerations or emotional connection. This
might heighten the efficiency of testing itself at the expenses of a greater opportunity
for making the actual use of a nuclear weapon politically acceptable (the so-called
dulling effect).
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Further Reading Since discussion of the topic of virtual testing is restricted, only a
few publications are available. We suggest Gordin et al. (2005) who give a compre-
hensive overview of the changing methods over time and the role of the engineer. It
is well suited for experts outside physics or engineering.

3 Detecting Nuclear Tests: Present State of the Art

Since 1996 the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)
installed the first suite of sensors in the international monitoring system (IMS), the
network has expanded (currently 337 stations worldwide), and the technology has
been developed further. Monitoring stations have been updated as well as event
diagnostics enhanced. The IMS is a global network of different monitoring stations.
It includes waveform physical sensor stations (seismic, hydroacoustic and
infrasound) as well as radionuclide stations, of which half are equipped with noble
gas-detection equipment. The latter is most important for verification purposes, since
the nuclear character of an event can only be confirmed by detecting radioactive
noble gas isotopes, usually xenon and argon. The monitoring stations are connected
via a global network to a centralized processing system at the International Data
Centre (IDC) in Vienna. The IDC operates continuously and in real time. Two
aspects are relevant: The processing of single-station data, in which the raw seismic
sensor data is reduced and analyzed to detect and classify incoming signals at the
corresponding station, and network processing, through which signals from the same
event are associated with signals collected at different stations. This is done by an
automated algorithm and, in a second step, by a data analyst who carries out post-
processing to screen the data for additional events or false alarms. Fully automated
data processing is currently not possible due to errors caused by the automated
method: false detections, detections not occurring due to station noise, incorrect
classification of incoming signals, and incorrect associations (Russell et al., 2010).
CTBTO data is used not only for verification purposes, but also for investigating the
impact of climate change, issuing tsunami warnings or tracking radiation on a global
scale. To distribute the raw data the CTBTO has installed the virtual Data Exploi-
tation Centre (vDEC). Scientists can apply to use data desired for a designated
project and present their results.
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3.1 Detecting a Nuclear Test with Seismic Waveform Analysis

The detonation of any device underground creates seismic waves in the ground as
the detonation shakes up the soil surrounding the test site. These waves can be
detected over long distances with seismic arrays around the globe because their
physical nature allows them to travel over long distances. This is even more true for
hydroacoustic waves since water transmits acoustic waves even better. The signals
caused by an explosion differ from those of naturally occurring events such as
earthquakes and allow a precise localization of the event in question to within a
few kilometers. Unfortunately, the signal contains no further information making it
possible to distinguish a chemical from a nuclear explosion, apart from the actual
yield, that can give an indication of what type of event it was. To verify the nuclear
character of an event, traces of radioactive isotopes need to be measured. This can be
done by means of different procedures.

3.1.1 Creating a High-Quality Event Bulletin

The IMS consists of stations for different waveform technologies which are seismic,
hydroacoustic and infrasound. Since the most recent nuclear tests have all been
performed underground, seismic stations are of high interest. These stations operate
constantly and collect data which is sent to the IDC for further analysis and
interpretation. The aim is to create an event bulletin which logs as a possible
detection any event that occurs and can be used for any further interpretation and
(eventually) decision-making.

At the IDC the data that has been collected is processed in the following way: The
data is filtered several times by the automatic detection system and the resulting
events are presented in a list (named Standard Event List 3—SEL3). This list is then
reviewed by analysts to eliminate any false positives (events which the system
labeled as detections although they were not). Events that are not screened out by
the analysts are known as good automatic origins and are labeled true positives.
Events, that are not on the list but should have been detected by the system are added
manually by the analysts and are known as extra analyst-built origins and labeled
false negatives (missed detections). Naturally, this process applies only to events
which are represented in the data. In reality there might be more events which were
not detected at any stage of the verification process. Such events are regarded
henceforth as correct non-detections and are labeled true negatives (but can never
be measured). The result is a high-quality reviewed event bulletin (REB). The
interesting step here is the amount of human effort involved from automated list to
event bulletin. Regardless of the number of operating seismic stations, the percent-
age of automatic events which survive the analysts’ review is about 47%. This
accounts for about 87% of the final data. The remaining 13% are events missed by
the automated processing and are added manually to the bulletin by the analyst.
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Procopio et al. (2009) used a ML algorithm with the aim of reducing the output of
false events by the system to reduce the workload of analysts. This translates into a
two-class problem, where the classifier predicts one of two possible labels for a given
event. The supervised learning models were trained on half of the data from SEL3
and then further tested on the remaining data. A decision-tree model was used in the
corresponding study to split on the basis of a single attribute of the event. This
represents a typical application of a ML algorithm for data reduction. The sheer load
cannot be handled by a human analyst and, since screening for events is a purely
objective selection process, it can be learned by an algorithm. This method is applied
in several different fields of science and economics. Seismic signals are only one
example of big data which can be handled efficiently by AI only.

In the future this application will improve even further since the data is numeric
and does not include any pattern or complex object which might be difficult to
analyze for AI (such as handwriting or faces). When the event bulletin can be created
by an ML algorithm without any further improvement by a human analyst, this will
be an important step in efficiency, because it will result in greater human capacity for
more creative work.

The seismo-acoustic motion created by a near-surface explosion can be used to
estimate the yield of the device involved. This approach is complicated by the fact
that for proper yield estimation the depth of burial must be known; in most cases the
level of uncertainty about this is substantial at best and has a significant impact on the
resulting values.

Further Reading Russell et al. (2010) gives a very well-written and comprehen-
sive overview of the different steps in the data processing of seismic signals.
Different ML concepts are discussed and explained in an understandable way.

3.1.2 Yield Estimation

An example of the use of AI to extract information from the vast amount of existing
data from past nuclear tests is ML algorithms which learn to identify visual features
from videos of explosions for further yield-estimation analysis. The nuclear explo-
sion yield of an atmospheric test can be estimated based on 3D visual information.
Volume-based models have been demonstrated to reduce the error significantly
compared with radius-based models. However, no 3D representations of past tests
exist, and new data is not available since atmospheric tests are now banned.
Consequently, research focuses on building 3D representations from existing data
recorded in the early stages of atmospheric nuclear testing. The US conducted and
filmed over 200 atmospheric tests during the 1950s and 1960s. The Lawrence
Livermore National Lab digitalized these films which can now be used as validation
for fundamental nuclear explosion models. The method currently used for feature
detection is scale-invariant feature transform (SIFT). It has become the standard for
3D reconstruction from 2D representations (photographs as well as films), but only
works well for continuous angular coverage of the given data. This is problematic



since the available videos of nuclear tests are separated by up to 80°. To merge
different videos, hotspots consisting of bomb casing debris are used. This debris is
spread across a wide area and varies in size and orientation but may be useful in
correlating multiple frames from different camera perspectives. Among other things,
Schmitt and Peterson (2014) used a supervised and an unsupervised learning
algorithm to find the best feature for detecting hotspots. This has the huge advantage
that no further human intervention is needed. Since the algorithm is unsupervised it
improves itself on its own and adapts to each new problem that arises.
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The results show that the average runtime per image was 1800 times longer for
the supervised learning feature. The unsupervised ML algorithm achieved a good
overall hit and precision rate and a fairly low false-alarm rate. These results could
also be used for other features of interest in explosion data that have been collected
and could be applied to different datasets. The detection of hotspots is of interest to
different user groups ranging from verification purposes (yield estimation of a
particular event) at one end of the spectrum to virtual testing (model evaluation for
blast propagation, etc.) at the opposite end.

Whereas ML algorithms have proved to be a valuable tool because of their above-
mentioned advantages for analyzing large amounts of data, in a nuclear testing
context the bottleneck is the availability of datasets for analysis and training.
Because actual nuclear explosions are rare, datasets from earlier events or simula-
tions are the main source for analysis and training.

3.2 Radionuclides

The only technology able to distinguish low-yield clandestine nuclear explosions
from other events is the monitoring of radionuclides and radioactive noble gases in
particular. Currently, four xenon isotopes are being monitored by 40 stations of the
IMS around the world. The challenge is to discriminate signatures of a supposed
nuclear explosion from (regular) emissions from civilian sources such as nuclear
power plants or (especially challenging) medical isotope production facilities. Fur-
ther difficulties arise from the very limited set of data from past tests: Until now it has
never been possible to measure all four isotopes after an actual test. Nevertheless,
these datasets are helpful for future comparisons. The established method
(Kalinowski et al., 2010) of distinguishing emissions from a potential explosion
from other emissions is a log-log graph of the four isotopes sorted into two ratios.
The discriminator between the two types of emission in this graph is a line which
works independently of the corresponding decay time. This procedure is compli-
cated when new signals with high signal strength are added to the dataset. The linear
discriminator breaks down since data which correspond to the non-explosion emis-
sion is now located in the explosion section of the plot. As a result, different sorting
methods are required.

The task at hand resembles a classification problem, in which the measured
concentration can be classified either as an explosion or as background. It is



challenging to discriminate signals in a higher xenon environment, because back-
ground and explosion will not be separate measurements but mixed together. Since
traditional algorithms which discriminate between all data classes to build models
are known to suffer from such an imbalance in the dataset, one-class classifiers are
important. In this method, only the data for one class, the target class, is used to build
a model, so that this approach relies on recognition rather than on discrimination. In
this case, the algorithm is trained on the background dataset, which is highly
complex, and modeling the various nuances is difficult. A traditional approach is
density estimation in which a statistical distribution is fitted to the target class. The
learned density function can then be used to classify values: Those with high density
belong to the target class and values of lower density are sorted into the outlier class.
Nonetheless. of course, there is a variety of different algorithms, some of which have
specifically been developed for one specific class classification, and each has its own
challenges and limitations. Sharma et al. (2012) suggested a method in which the
data is clustered by an algorithm (k-means) before a one-class classifier is used to
model the clustered data. The training dataset for CTBT purposes consisted of a
series of simulated industrial radioxenon emitters and random clandestine tests
(since there is no real data available for the latter). In total, three CTBT datasets
have been used with different ratios of imbalance. All one-class classifiers explored
performed better if the data had been clustered first, without much difference in the
imbalance between target (background) and outlier (explosion) class.
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A more comprehensive approach to ML and xenon measurements was chosen by
Stocki et al. (2010). They used a background dataset and a background plus
synthetic explosion dataset. The real data was taken from the Ottawa monitoring
station since it has one of the highest background rates and hence is one of the most
challenging setups for classification. They then reviewed several different ML
techniques by building linear and non-linear classifiers. The selected
algorithms were: Naive Bayes, Multiple Layer Perceptron, Support Vector Machine,
k-Nearest Neighbors and Decision Tree. The latter method is able to explain
decisions that are taken, which can be important for discovering new features. To
train and test the corresponding algorithm, a statistical method called tenfold cross-
validation was used. It was developed for problems with small datasets: The data is
stratified into tenfolds and in each run ninefolds are used to train the algorithm and
the remaining one for testing. Stocki et al. (2010) found that all ML algorithms
outperformed the traditional approach. In their study, the linear discriminator
achieved an accuracy level of 57%, whereas the ML algorithms achieved 83% and
98.9% accuracy.

ML is also used to establish new verification methods for the measurement of
radioactive argon isotopes. Unlike xenon, argon is not produced in the fission of
uranium or plutonium but by activation of stable argon isotopes in the air or of
calcium in the soil surrounding the test site [see for example Heise (2019) for a
detailed discussion]. Mace and Ward (2018) used a deep-learning neural network to
analyze radio-argon signals in an underground laboratory for future verification
purposes. Deep learning is one method in the broader family of ML algorithms. It
uses a series of layers which perform different tasks. These resemble the activity of



neurons in a biological brain where each layer performs a transformation from input
to output. The network was trained on several tens of thousands of signals to
distinguish between the detection of radioactive decay and noise. The hit rate has
reliably been at about 99%.
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Further Reading A detailed discussion of the above-mentioned different ML
methods in the context of radionuclide measurement for verification purposes is to
be found in Stocki et al. (2010), who discuss the difficulty of discriminating between
emissions from tests and other sources as well as the use of different ML algorithms.

3.3 Threads for AI in Nuclear Test Detection

Some scientists have mentioned the idea that if the CTBTO collects, processes and
releases data of such high quality and quantity, testing a nuclear device itself might
become obsolete. However, it must be pointed out that the CTBTO data is used for
verification purposes, and it does not allow for any extraction of information about
the actual weapon design. No further proliferation risk arises from the CTBTO
datasets in combination with ML algorithms. Yet datasets about an actual explosion
are of crucial interest to parties which want to develop a nuclear device of their own.
A comprehensive collection of data with efficient AI methods might be enough to
provide the desired knowledge about the design of a nuclear weapon and in the
technical age it might be easier to access the desired data than the corresponding
knowledge (whether from a person or a blueprint). Murphy (2019) argues that ML is
a current threat in the context of cybersecurity and that the remote measuring stations
of the CTBTO are exposed to cyberattacks. The source cited by Murphy (2019)
cannot be traced, but the general problem remains that the learning mechanism of AI
algorithms relies heavily on the accuracy of the specific events in question. Any
changes made by a cyberattack (for example, inserting false positives into the data
set) could invalidate the verification mechanism: If the algorithm raises an alarm
based on high values which are not true measurements, the station is no longer
functioning reliably. Should the dataset be compromised by a malicious attack from
a third party, e.g., by tampering with the training dataset, then subsequent conclu-
sions made by the AI would be negatively affected by it and, depending on the
attack, might even be completely false. Since real events are so rare, we cannot rely
on these events alone to outbalance the falsified events. Assuming this attack was
performed subtly enough, and not directly noticed, then a series of incorrect con-
clusions drawn by the AI on the basis of this dataset might be the result. Even worse,
other algorithms developed to classify data might be fundamentally wrong if, as a
bandwagon effect, their developers tried to bring their results into agreement with
these published incorrect methods.

False attribution via a cyberattack will lead to permanent false conclusions, since
the false data is integrated into the data pool used for every future decision.
Consequently, it is necessary for experienced scientists to check and evaluate the
data pool regularly, to ensure that no such false data has been inserted. Given the



complexity of this task, different measures should be used for the evaluation. Finally,
the question arises whether analysis will at some point become almost impossibly
difficult for humans.
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4 Conclusion

All fields in the realm of nuclear testing require the analysis of huge amounts of data
and hence depend on the use of ML algorithms to reduce the workload of human
analysts and improve the overall quality of the output.

Surprisingly enough, apparently the available technology is being implemented
only reluctantly (or the technology has been implemented but the process or results
have not been documented or published, for whatever reason). While this is to be
expected in the field of virtual testing given its restricted data policies, it cannot
apply to the verification of nuclear testing by the CTBTO. It should be noted that
several of the available publications concerning the verification of the CTBT which
have been used in this work were published about a decade ago. Since then, nuclear
testing, as well as technological knowledge and use of AI, have continued to develop
during this time. Because of the lack of published material, conclusions drawn here
must be taken with a grain of salt. This might be due to the sometimes rigid working
structure of the UN as an organization: The system it has in place is hardly ever
altered or changed, and if so only quite slowly.

While this might be the case for the CTBTO it certainly is not for national
laboratories or other government institutions which deal with the task of providing
their government with a working nuclear device. Russell et al. (2010) notes the
availability of raw data for testing purposes as the principal obstacle to the imple-
mentation of ML. At least for the CTBTO, this will remain an issue which might still
be resolved by the use of more efficient training algorithms.

The use of ML and AI, in general, is a major shift in working culture. This has
been especially highlighted in the case of virtual testing. While the sheer workload of
data analysts is reduced, it throws the scientist back on personal creative abilities and
might be a factor in resistance to change. From a technical perspective, ML algo-
rithms are capable of supporting and improving the complex task of data analysis; so
far this has mainly been in terms of the amount of data that can be processed, but in
the near future the quality of the corresponding output will take on importance
as well.
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Opportunities, Challenges and Risks

Artificial Intelligence in Conventional Arms
Control and Military Confidence-Building

Benjamin Schaller

Abstract This chapter explores the opportunities, challenges and risks of using
artificial intelligence (AI) technologies in the context of conventional arms control
and military confidence-building. First, it briefly reflects upon different theoretical
approaches and perspectives on arms control and military confidence-building.
Second, it provides a brief overview of existing treaties, regimes and measures in
Europe. Finally, the chapter concludes with a few reflections and food for thought on
the opportunities, challenges and risks inherent in AI technologies for: (1) the
balance of power; (2) analysis, planning, coordination, and evaluation; (3) verifica-
tion and (4) trust-building in conventional arms control and military confidence-
building measures in Europe. In sum, the chapter argues that the best prospects for
AI technologies in conventional arms control and military confidence-building are in
the augmentation of human intelligence, while the biggest risks lie in a lack of
human oversight and an uncritical reliance on AI systems, as well as in the reduction
of the trust-building effects of direct military-to-military contacts.

1 Introduction

The recent deterioration of relations between the North Atlantic Treaty Organization
(NATO) and Russia has put conventional arms control and military confidence-
building back on the agenda of defense and security-policy discussions in Europe.
For many years, this hardening of already opposing positions on the role and future
direction of conventional arms control and military confidence-building in Europe
has blocked serious modernization efforts. Still largely reflecting the political,
military and technological realities of the end of the Cold War, conventional arms
control and confidence- and security-building measures (CSBM) have for many
years been struggling with a constantly diminishing role in European defense and
security politics. While the global order has witnessed an increasing shift toward
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First, I will reflect upon previous theoretical approaches to the role of arms
control and military confidence-building in defense and security politics. Secondly,
I will provide a brief overview of central treaties and documents as well as current
challenges faced by conventional arms control and military confidence-building in
Europe. Finally, I conclude with some initial reflections about the potential oppor-
tunities, challenges and risks of AI technologies in conventional arms control and
military confidence-building. More specifically, I will reflect upon their potential
role and impact on

multipolarity (e.g., through the rise of new major powers, such as China), partici-
pating states of the Organization for Security and Co-operation (OSCE) are
embroiled in debate over alleged cases of non-compliance and political disagree-
ments on the role and future direction of conventional arms control in Europe,
turning the OSCE into another arena where the political and strategic tensions and
disagreements between Russia and the West unfold (Charap et al., 2020, pp. 1–2;
Koivula, 2017, p. 113; Schaller, 2020, pp. 126–128).
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In such a political gridlock situation, there has been little room for discussion of
the potential role and impact that artificial intelligence (AI) technologies could have
in the modernization and future of conventional arms control and military
confidence-building in Europe.1 Consequently, in the absence of a broader academic
or political debate, this chapter will approach the topic by discussing the opportuni-
ties, challenges and risks of AI technologies in conventional arms control and
military confidence-building in Europe from a more practical/conceptual as well as
theoretical point of view. To this end, the chapter is divided into three sections:

• existing categories of military forces and equipment,
• the planning and coordination,
• implementation, and
• analysis and evaluation of existing regimes.

2 Theoretical Approaches to Arms Control and Military
Confidence-Building

This section provides a brief overview of existing theoretical approaches to interna-
tional relations that—consciously or unconsciously—shape the perspectives of
scholars, policymakers and practitioners on the role of arms control and military
confidence-building in defense and security policy. These perspectives will also very
probably influence their positions regarding the introduction of AI technologies into
conventional arms control and military confidence-building in Europe.

1This does not refer to the numerous discussions and debates presented in this book, but to debates
specifically focusing on conventional arms control and military confidence-building in the context
of the OSCE.
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Looking at previous academic debates, it seems fair to conclude that, apart from a
small expert community, arms control and military confidence-building have suf-
fered from a considerable decline in interest in defense and security-policy debates
since the end of the ColdWar. This waning interest probably also explains why some
of the most influential theoretical approaches date back to a period between the
1960s and the 1990s (e.g. Bull, 1961; Darilek, 1992; Schelling & Halperin, 1961).
More recent academic debates are dominated by empirical case studies and policy
analysis and primarily focus on the role of arms control and military confidence-
building in relations among the United States (US), NATO and the Russian Feder-
ation (or previously the Soviet Union) (e.g. Koivula & Simonen, 2017; Kühn, 2013;
Lachowski, 2004). The theoretical underpinnings of most studies can be grouped
loosely into three different theoretical camps in international relations theory: struc-
tural realism, neoliberal institutionalism and constructivism.

2.1 The Structural Realist Approach to Arms Control
and Military Confidence-Building

The first group has its roots in a more traditional structural realist understanding of
international relations that is primarily concerned with the constant struggle for
survival faced by states in the anarchical structure of the international system
(e.g. Jervis, 1978; Mearsheimer, 2014; Waltz, 1979). Consequently, scholars in
this tradition look at arms control and CSBM primarily through the lens of “balances
of power,” emphasizing measures that reduce, limit or impose constraints on the
military capabilities of states and arguing for highly stringent and comprehensive
verification regimes (e.g. Bull, 1961; Peters, 2000; Schelling & Halperin, 1961).

2.2 The Neoliberal Institutionalist Approach to Arms Control
and Military Confidence-Building

The second camp is rooted in neoliberal institutionalism, which holds that the
anarchy in the international system can be overcome by the establishment of
international institutions, norms and laws that guide the behavior and facilitate
cooperation among states (e.g. Keohane, 1984; Keohane & Nye, 1999). Scholars
in this tradition assess the ability of arms control and CSBM to address and
overcome the problems of anarchy—most notably the security dilemma—in defense
and security relations among states by emphasizing the importance of increased
transparency and predictability in connection with military forces, capabilities and
activities, such as through regular exchanges of information and credible verification
mechanisms that reduce the risk of deception (e.g. Borawski, 1986; Darilek, 1992;
Vick, 1988).
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Fig. 1 Theoretical approaches to arms control and military confidence-building. Own illustration

2.3 The Constructivist Approach to Arms Control
and Military Confidence-Building

The third and probably least influential camp in scholarly debates on arms control
and CSBM has its roots in a constructivist understanding of international relations.
Constructivist scholars rebut traditional arguments that anarchy and security
dilemmas are inherent features of the international system, arguing instead that
both are constructed through the behavior and interactions among states
(e.g. Finnemore, 1996; Wendt, 1992). Constructivist scholars usually focus on the
ability of arms control and CSBM to facilitate direct contacts and cooperative
approaches to security, which are seen as facilitating the formation of more trusting
defense and security relations among states (e.g. Adler, 1998, p. 128; Schaller, 2020,
p. 24).

2.4 Summary

The three different theoretical camps are summarized in the subsequent overview
(Fig. 1).

3 Conventional Arms Control and Military
Confidence-Building in Europe: A Brief Overview

The current framework of interlocking arms control and CSBM regimes in Europe
dates back to a period of rapprochement that led to the adoption of a number of
central documents and treaties that culminated in the post-Cold War European
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security architecture (e.g. the Helsinki Final Act of 1975, the NATO-Russia
Founding Act of 1997, the Paris Charter of 1990). Each treaty and document was
meant to help bridge the divide that had separated East and West for many years.
This political process was also accompanied by a number of military negotiations,
such as the Mutual and Balanced Force Reductions (MBFR) talks between NATO
and the Warsaw Pact (Goldblat, 2002, pp. 220–222), negotiations about military
confidence-building measures in the context of the Conference on Security and
Co-operation in Europe (CSCE) (Goldblat, 2002, pp. 257–260), as well as consul-
tations on the establishment of an aerial observation regime. These negotiations and
talks led to the adoption of the Vienna Document on Confidence- and Security-
Building Measures (VDoc), the Treaty on Conventional Armed Forces in Europe
(CFE) in 1990 and the Treaty on Open Skies (OS) in 1992.

3.1 The Vienna Document (VDoc)

The VDoc was specifically designed to reduce the risk of surprise attacks and
unintended escalation between OSCE participating States by increasing transpar-
ency in connection with military forces and their activities in Europe. This was
largely achieved by means of a comprehensive annual exchange of military infor-
mation (e.g. on military forces, major weapon and equipment systems, or defense
planning) (VDoc, 2011, Ch. I & II), the prior announcement and observation of
larger military exercises and activities (VDoc, 2011, Ch. V & VI), as well as the
possibility of conducting a small number of inspections and evaluation visits in order
to verify samples of the military information that is regularly provided under the
document (VDoc, 2011, Ch. IX). With its specific focus on formation of trust, the
document also facilitates various opportunities for regular contacts between militar-
ies from OSCE participating States (e.g. visits to air bases and other military
facilities, demonstrations of new weapon systems, seminars) (VDoc, 2011,
Ch. IV). Since its first adoption, the VDoc has been updated and modernized four
times, most recently through minor technical adaptations in 2011. A scheduled
update of the document in 2016 was prevented by Russia, which stated that
NATO’s “policy of military containment of Russia and the Alliance’s concrete
steps in the military sphere rule out the possibility of reaching agreements on
confidence-building” (Forum for Security Co-operation [FSC], 2016, Annex 3).

3.2 The Treaty on Conventional Armed Forces in Europe
(CFE Treaty)

The CFE Treaty is a full-fledged conventional disarmament and arms control treaty,
originally designed to reduce the possibility of major offensive military operations



134 B. Schaller

and to contribute to a stable military balance at a lower level of conventional military
forces between NATO and the (former) Warsaw Pact. To this end, in contrast to the
VDoc, the CFE Treaty defines total and regional limits for holding and deployment
of five major conventional weapon systems in Europe, namely battle tanks, armored
combat vehicles, artillery, combat aircraft and combat helicopters (CFE Treaty, Art.
IV, V & VI). In addition, the CFE Treaty established a very detailed and compre-
hensive system of annual exchanges of information and regular notification of
changes in the conventional armed forces of states parties (e.g. about the command
structure, total holdings, personnel, dislocation sites, entry and exit into the area of
application, and uncommissioned equipment) (CFE treaty, Art. XIII & Protocol on
Notification and Exchange of Information). The provisions of the CFE Treaty are
complemented by a particularly thorough and comprehensive verification regime
that allows states parties to more credibly monitor and verify the compliance of all
parties with the treaty’s provisions (e.g. through a considerably higher number of
inspection quotas or more rights for inspection teams) (CFE Treaty, Art. XIV &
Protocol on Inspection). In the course of the treaty, which only applies to NATO
member states prior to the end of the Cold War as well as the successor states of the
former Warsaw Pact, approximately 60,000 heavy weapon systems in Europe have
been successfully destroyed (Federal Foreign Office, 2018). Due to a dispute
between Russia and NATO states over the full withdrawal of Russian troops from
Georgia and Moldova (“Istanbul Agreements”), the ratification of the Adapted
Treaty on Conventional Armed Forces in Europe (ACFE)—a modernized version
of the CFE Treaty—failed. This failure led Russia to unilaterally stop its implemen-
tation of the CFE Treaty in 2007 and to withdraw from the treaty’s Joint Consultative
Commission in 2015, resulting in a political deadlock that remains unresolved to this
day (see Koivula, 2017, p. 120; Mankoff, 2012, pp. 130–131; North Atlantic Treaty
Organization [NATO], 2018).

3.3 The Treaty on Open Skies (OS)

The treaty on OS is a military transparency and confidence-building regime that
allows its 34 signatory states to conduct observation flights over the territories of all
treaty states. To this end, the treaty defines rules for quota distribution (Treaty on OS,
Art. III), defines flight procedures and mission planning (Treaty on OS, Art. VI) and
specifies technical details for observation aircraft, cameras and sensors (Treaty on
OS, Art. IV & V). The treaty does not have its own dedicated system of military
information exchange, but primarily relies on the information provided through
other treaties and documents, such as the VDoc and the CFE treaty. In addition,
the Treaty on OS is the only conventional arms control and CSBM regime in Europe
that also covers the land territories of Canada, the United States and Russia (east of
the Ural Mountains). It contains strict regulations regarding the cameras and sensors
used (e.g. limits on the maximum ground resolution) (Treaty on OS, Art. IV), is
cooperative in nature (flights are conducted in cooperation with the inspected state)



(Treaty on OS, Art. VI) and all treaty states have the right to acquire images taken
during OS missions (Treaty on OS, Art. IX). While the treaty has also been used
during the early stages of the crisis in and around Ukraine (Bell & Wier, 2019), its
main focus is more on military confidence-building, than military surveillance. The
treaty on OS has also been negatively affected by deteriorating relations between
Russia and the West. This has given rise to a number of implementation disputes,
most notably between Russia and the United States, such as restrictions on the
maximum flight distance over Kaliningrad or regarding observation flights in prox-
imity to the Russian-Georgian border (Bell et al., 2020, pp. 2–3; Bell &Wier, 2019).
In 2020, the dispute between Russia and the United States culminated in the United
States withdrawing from the treaty completely, (United States Department of State,
2020) with Russia following the end of 2021 (TASS, 2021). In short, the treaty on
OS has—just like other arms control and CSBM regimes—come under serious
political pressure in recent years.

3.4 Major Challenges

Western-Russian relations have been in a slow but constant decay for many years
and their drastic deterioration since 2014 has only reinforced the already entrenched
positions on both sides. Having missed various opportunities for adapting existing
measures and regimes to the current political, military and technological realities,
conventional arms control and CSBM are struggling to fulfill their stabilizing and
trust-building function in the European security architecture. Some of the most
notable shortcomings in this regard are:
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• Gaps and loopholes in existing provisions and regulations (e.g. excessively high
thresholds for the notification or observation of exercises and activities, or
possibilities for conducting large-scale exercises without prior notification or
observation);

• Insufficient inclusion of naval and paramilitary forces as well as of new technol-
ogies and weapon systems (e.g. AI, drones or autonomous weapon systems);

• Developments in military structures, doctrines and strategies (e.g. shifts toward
smaller, highly deployable forces with considerable firepower); as well as

• Changes in conflict scenarios (e.g. the increasing number of intrastate conflicts
and hybrid/gray-zone attacks) (Charap et al., 2020; Koivula, 2017; Schaller,
2018).
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4 Artificial Intelligence and Machine Learning
in Conventional Arms Control: Opportunities,
Challenges and Risks

This section will present initial reflections about the potential opportunities, chal-
lenges and risks of AI technologies in conventional arms control and military
confidence-building. More specifically, it will reflect upon how AI technologies
may affect the main principles and mechanisms of arms control and CSBM and how
they may be able to support the implementation of these mechanisms. Specific
attention will be paid to the challenges and risks of machine learning, data mining,
visual analytics and augmented intelligence. On the basis of the previous two
sections of this chapter, four main questions regarding the potential role, impact
and opportunities inherent in these challenges and risks can be identified:

1. To what extent will AI technologies affect the balance of power between states?
2. How can AI technologies help in the analysis of information about military

capabilities and activities?
3. To what extent can AI technologies contribute to more thorough and compre-

hensive verification?
4. How will the increasing use of AI technologies affect the interaction and fre-

quency of direct military-to-military contacts on the ground?

Each question is discussed in greater detail in the four following sections.

4.1 Changes in the Balance of Power

Advances in AI technologies, such as machine learning (ML), will challenge the
already delicate and somewhat outdated “balance of power” that many traditional
arms control regimes seek to establish or maintain between political and military
opponents. One of the issues that is currently the subject of probably the most
controversy is the potential control of so-called “Lethal Autonomous Weapon
Systems” (LAWS) under the United Nations Convention on Prohibitions or Restric-
tions on the Use of Certain Conventional Weapons (CCW) (e.g. Friman, 2017;
Koivula, 2017, p. 125; Maas, 2019; also see the text by Anka Dahlmann in this
volume).

Apart from increasing autonomy, emerging AI technologies will also have a
considerable impact on the processing power, precision and military application of
existing weapon and equipment systems. This considerably reduces the reaction time
for decision-makers and may undermine the existing balances of power among
states. In this regard, advances in AI technologies seem to reinforce the arguments
of those who call for an increased focus on qualitative factors in conventional arms
control and CSBM. While the focus has traditionally been on numerical limits for
certain weapon categories and systems (e.g. battle tanks) establishing stable balances



of power, today there is a need for a more qualitative approach to arms control that
also looks at the capacities of different weapon and equipment systems
(e.g. mobility, (re)deployment, fire power) (Koivula, 2017, pp. 123–127; Kühn,
2013, pp. 196–198; Schaller, 2018, pp. 116–117). In this context, this raises the
question of how viable and comparable purely numerical limits on weapon systems
and equipment are, if their capacities can be significantly amplified by advanced
sensors and software solutions. For example, AI technologies, such as ML or visual
analytics, could support the identification of enemy targets and speed up human
decision-making processes or make decisions to engage with certain targets
completely on their own. Considering that such qualitative differences are hard to
compare and that software codes may have different error rates and can be altered
rather quickly, determining and verifying whether a certain weapon system is
capable of performing such tasks, is not only of grave ethical concern, but also
poses significant challenges to traditional verification measures, during which spe-
cially trained verification officers conduct on-site inspections of military equipment
and personnel.
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Nevertheless, within the OSCE, the role and impact of AI technologies has, so far,
only played a minor role. The current problems and positions of different stake-
holders in arms control and CSBM (e.g. allegations of non-compliance, the role and
impact of regional conflicts in the OSCE area) are too great and too strongly
entrenched. However, sooner or later, the technological advances in the field of AI
will make discussions on the future of conventional arms control and CSBM in
Europe. This will be especially true for the necessity of including new weapon
systems, such as drones and automated systems, in existing as well as future
documents and regimes.

4.2 Analysis, Planning, Coordination and Evaluation

AI technologies will most probably also change the way countries analyze the
military information that is exchanged through different arms control treaties and
regimes as well as the way they plan, coordinate, and evaluate their arms control and
CSBM activities (e.g. verification measures).

Already today, countries rely on AI technologies to analyze and detect anomalies
and trends in particularly large and complex data sets (“big data”). The information
gathered through such systems is then often used for risk assessment, crisis detection
and early warning. For example, the German Federal Foreign Office uses ML for
detecting potential crisis situations at as early a stage as possible (see Federal Foreign
Office, 2020), while data scientists have developed advanced systems for disaster
management and crisis response after natural disasters (e.g. Mittelstädt et al., 2015;
Wang et al., 2018). While these systems are not free of errors or potential biases—
they detect only what they are programmed to detect—with the further development
AI technologies (e.g. in error reduction, image or pattern recognition), the role and
importance of such systems will further increase in the future.
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In addition, in the context of arms control and CSBM, states exchange large
amounts of military information. For example, under the Vienna Document’s
Annual Exchange of Military Information (AEMI), participating states exchange
information about the organization, size and location of their troops as well as the
size and location of major weapon and equipment systems (e.g. battle tanks, artillery
systems, armored vehicles) (VDoc, 2011, Ch. I & II). Similarly, even more detailed
exchanges of military information also take place under the provisions of the CFE
Treaty (CFE Treaty, Art. XIII & Protocol on Notification and Exchange of Infor-
mation). These exchanges consist of long lists and tabular data, listing equipment,
troops and their locations.2 Digitalized, exploratory data analysis with data mining,
visual analytics, and ML can assist arms control units in the analysis and monitoring
of this information. For example, at their best AI solutions monitored by trained and
experienced personnel can help arms control officers and governments and improve
the detection of trends, developments and changes in the force structure, activities,
capabilities and deployment of OSCE participating states (e.g. through visual
processing or data mining). The findings of such processes could then be fed into
different (national and multinational) early-warning mechanisms and assist arms
control units and governments in target selection for inspections and on-site verifi-
cation activities. In addition, AI systems could also keep track of other countries’
verification activities, for example, when a certain site was inspected for the last
time, what the findings of that mission were, and whether any significant changes
have been reported since.3 AI systems can also assist arms control units in post-
inspection evaluation, such as in the comparison of findings with information that is
exchanged and the results of previous verification measures, or in the processing and
analysis of images under the Treaty on Open Skies. For example, using pattern
recognition AI technologies could learn the typical strategic elements and infrastruc-
ture of military bases and airfields and support the detection of changes in their setup.

However, considering the obvious limitations of AI technologies (e.g. their
capacity and error rate depend on their programming and training), it is important
that AI solutions continue to be combined with human expertise, experience and
instinct. The main benefit of such “human-in-the-loop hybrid-augmented intelli-
gence” systems—systems that rely on a combination of human intelligence,
enhanced by technical means, such as visual analytics, ML or data mining (see
Zheng et al., 2017, p. 154)—lies in their ability to assist experienced and well-trained
arms control officers in the development of recommended actions for practitioners
and policymakers. This can ensure faster, more informed, and ideally more appro-
priate government reactions (e.g. in emerging crisis situations), while practitioners
receive more time for direct interaction with arms control officers from other
countries, a key aspect of military confidence-building (Schaller, 2020,
pp. 236–238).

2This can, for instance, be seen in the publicly available Annual Exchange of Military Information
(AEMI) of the Finnish armed forces (see The Finnish Defence Forces, 2019).
3Some countries are already using comparable systems and software solutions.
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4.3 More Thorough and Comprehensive Verification

AI technologies can also make a significant contribution to the verification of arms
control and CSBM regimes. More specifically, at their best they can facilitate more
thorough and comprehensive verification that can be implemented whenever the
deployment of inspection personnel would be too dangerous (e.g. in emerging crisis
situations) or politically difficult (e.g. due to status implications in contested regional
conflicts).

Technical means of verification (e.g. infrared, radar or telemetric sensors) tend to
retain the upper hand under difficult environmental and light conditions (e.g. rain,
twilight, clouds, fog) (Goldblat, 2002, pp. 314–315). Cameras, sensors, and the
software underlying them could even be trained not only to (self-)identify weapon
systems and military equipment during verification measures (on the ground or in the
air), but also to detect possible variations and modifications (e.g. new antennas or
setups). In combination with well-trained and experienced personnel, the quality of
such technical means of verification could be even further enhanced. For example,
through credible monitoring and training, such augmented intelligence systems
could considerably reduce the risk of deception (e.g. through additional structures
on vehicles or lookalikes), allowing for a particularly robust verification regime.

In addition, AI technologies could assist or, where necessary, completely replace
national verification teams in situations where deployment of military personnel and
experts on the ground would be too dangerous (such as conflict zones) or politically
sensitive (such as potential status implications in protracted conflict situations). For
example, during emerging crisis situations, technical means of verification
(e.g. drones, CCTV, sensors) could be made available to a neutral third party
(e.g. the OSCE Conflict Prevention Centre), as it was the case for the OSCE Special
Monitoring Mission to Ukraine (OSCE Special Monitoring Mission to Ukraine,
2019). Complemented by AI technologies, these technical means of verification
could be used to provide a comprehensive, fast and impartial picture of the security
situation, allowing OSCE participating states to react more swiftly and appropriately
to a quickly evolving crisis situation. For example, as mentioned above, AI tech-
nologies could be used to (self-)identify weapon systems and military equipment on
the ground or to ensure a swifter analysis and evaluation of verification findings. In
addition, augmented intelligence systems could also be used to monitor agreements
between participating states and non-recognized entities in protracted conflict situ-
ations (e.g. Abkhazia, South Ossetia or Transnistria). Whereas the deployment of
national verification personnel would have considerable status implications for these
entities under international law (Kapanadze et al., 2017, p. 12), technical means of
verification could offer possible workarounds. For example, the monitoring of trade
between Russia and Georgia is carried out by a private company, which inter alia
makes use of electronic seals and GPS tracking, a solution that was necessary as the
two sides could not agree on how to regulate trade involving the Georgian break-
away territories of South Ossetia and Abkhazia (Civil.ge, 2011).
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While technologically feasible, the main challenges for such more technical
verification regimes are to establish sufficient levels of trust in the technical solutions
provided as well as the predictably difficult negotiations between states on granting
each other or a neutral third party such far-reaching and intrusive verification
possibilities. Such a precedence exists, in particular in the area of nuclear arms
control, such as satellite-based monitoring of missile launchers (Goldblat, 2002,
p. 315) or in the form of technical (such as CCTV) and on-site monitoring of nuclear
safeguards by the International Atomic Energy Agency (IAEA) (Goldblat, 2002,
pp. 318–319). However, the use of technical equipment (e.g. digital cameras or
satellite positioning systems) during conventional arms control inspections is often
met with skepticism and notable national reservations. Within the context of the
OSCE, this can be seen in previous disagreements over the certification of digital
cameras, infrared sensors or radar sensors under the Treaty on Open Skies (Bell &
Wier, 2019). In fact, even today, most aircraft still fly with old analog cameras and
sensors, while the transition to digital cameras is just getting under way.

4.4 The Importance of Maintaining the “Human Factor”
in Arms Control

At their best, AI technologies potentially offer many opportunities for increasing the
level of transparency and predictability in defense and security relations between
states. However, they also pose significant risks and challenges that underline the
importance of preserving the essential “human factor” in military confidence-
building and arms control.

First, due to the fact that the performance and reliability of AI systems depends to
a considerable extent on their programming and training, which—as already
discussed above—can lead to errors and unintended biases, there is merit in focusing
on the development of “human-in-the-loop” solutions. Such “human-in-the-loop”
systems can also help overcome the “difficult question of liability and trust of
governments to base their own policies on AI systems, with an—at least for
them—often opaque decision-making processes” (“black box” character). Here,
arms control officers and specifically trained personnel will play an important role
in interpreting, explaining and translating the findings of AI systems into viable
recommendations for political decision-makers.

In addition to the difficult questions of bias, liability and mistrust, there is also the
risk of AI technologies significantly reducing the amount of direct contact and
cooperation among human personnel. While this human factor in arms control and
CSBM usually receives less attention in academia and politics, numerous historical
examples, personal experiences and reports of arms control officers suggest that
individual judgment, professional intuition and the interpersonal level of trust in
arms control and CSBM play a crucial role and should be actively safeguarded as an
essential component in arms control and military confidence-building (Lewis et al.,



2014, pp. 24–27; Schaller, 2020, pp. 168–180; Welch Larson, 1997, pp. 713–717).
As Allan S. Krass put it regarding the interplay of verification and trust in arms
control: “some initial trust must be present if any verification system is to succeed in
preserving an arms control or disarmament agreement” (Krass, 1985, p. 287).
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This level of professional and interpersonal trust appears to be particularly
valuable in times of increased political or military tension when other channels of
exchange and interaction are either strained or shut down. For example, since the
beginning of the crisis in and around Ukraine, the VDoc and the Open Skies Treaty
offer some of the few remaining venues for facilitating direct contacts between
Russian and Western military officers (Schaller, 2020, pp. 58–60). Both the post-
Cold War period and constructivist approaches to IR emphasize that such personal
contacts and interactions are absolutely indispensable for the development of more
trusting defense and security relations between states (e.g. Adler, 1998, p. 128;
Schaller, 2020, p. 24). Consequently, with increased advances in AI technologies it
is important that governments find ways of maintaining a credible level of direct
interaction and exchange among arms control officers on the ground. Increasing use
of AI technologies in the implementation of conventional arms control and CSBM
regimes in Europe should not result in even further cuts in budgets and personnel that
have already led to a considerable loss of expertise and have undermined their trust-
building effects. Ideally, these technologies should augment the capacities of arms
control officers, relieving them of routine and time-consuming tasks so they can
spend more time on their interactions and direct exchanges with colleagues from
different OSCE participating states.

In short, AI technologies should not be replacing, but instead assisting well-
trained and experienced personnel by means of augmented intelligence solutions that
allow a sufficient level of human oversight and military-to-military interaction in
conventional arms control and CSBM.

5 Concluding Remarks

While contrasting views and renewed tensions between Russia and the West have
led to a standstill in the discussions on the role and future direction of conventional
arms control and military confidence-building in Europe, technological advances,
also in the field of artificial intelligence, will leave their mark on the European
security landscape and affect the functioning of existing as well as future arms
control and CSBM regimes. In the absence of a more serious political and academic
discourse, this chapter discussed the opportunities, challenges and risks of AI and
ML for conventional arms control and military confidence-building in Europe. More
specifically, the chapter has highlighted how AI technologies may affect the military
balance of power between states, but also how they may in the best case also support
the work of arms control officers. For example, if operating reliably and in an
unbiased way, AI technologies could be used to detect anomalies in the regular
exchanges of military information, to help arms control units plan and coordinate



verification activities, and to analyze and evaluate data and verification findings
faster and more accurately. Together with the potential use of technical means of
verification (e.g. drones, CCTV) in difficult political situations or where the deploy-
ment of verification personnel would be too dangerous, AI technologies have
considerable potential for offering a swift and more impartial picture of the security
situation on the ground, so that governments can react quickly and with greater
precision to emerging crisis situations. However, despite these potential benefits, it is
important that AI technologies, which are prone to errors and biases, remain in a
supporting and supplementary role in conventional arms control and military
confidence-building. Direct military-to-military contacts and cooperative
approaches to security are too important in the formation of trust in defense and
security relations between states to be replaced by AI, just as careful human
assessment as well as the development of well-considered responses and
recommended actions are too sensitive and important for political decision-makers
for them to be abandoned. In short, the greatest opportunity for AI technologies in
conventional arms control and CSBM in Europe lies in the augmentation, not in the
replacement of human intelligence.
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Cyber Weapons and Artificial Intelligence:
Impact, Influence and the Challenges
for Arms Control

Thomas Reinhold and Christian Reuter

Abstract As cyber weapons and artificial intelligence technologies share the same
technological foundation of bits and bytes, there is a strong trend of connecting both,
thus addressing the imminent challenge of cyber weapons of processing, filtering
and aggregating huge amounts of digital data in real time into decisions and actions.
This chapter will analyze this development and highlight the increasing tendency
towards AI enabled autonomous decisions in defensive as well as offensive cyber
weapons, the arising additional challenges for attributing cyberattacks and the
problems for developing arms control measures for this “technology fusion”. How-
ever, the article also ventures an outlook how AI methods can help to mitigate these
challenges if applied for arms control measures itself.

1 Introduction

The idea of the weaponization of cyber tools has been under discussion for some
time (Reinhold & Reuter, 2019b; Werkner & Schörnig, 2019). Many military or
national security doctrines worldwide have adapted to the development that software
can be designed, injected, triggered and controlled in foreign IT systems to perform
tasks ranging from espionage to sabotage. This has been done from the perspective
of necessary and appropriate defensive measures but also partly as a new category
for offensive planning. Although no common international understanding has yet
been reached on the threats posed by cyber weapons and their prevention, let alone a
binding legal instrument, this field is already beginning to change due to the
emergence of improved algorithms in artificial intelligence and machine learning
(AI/ML) and their potential application for or against cyber weapons (Schörnig,
2018; US-DOD, 2018b). Given the fact that cyber and AI/ML measures are natural
siblings from a technical perspective, the following text provides an assessment of
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how AI/ML methods could influence the development of malicious cyber activities
based on an overview of their current state. Regarding the threats posed by this
development for international security and new challenges for arms control, the text
seeks on the one hand to assess how arms control approaches should prepare for AI/
ML-driven cyber weapons. On the other hand, the text also examines the question of
whether and how this technology can improve arms control approaches combating
the weaponization of cyberspace.
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2 Cyber Weapons and the Militarization of Cyberspace

Technological and scientific advances, especially the rapid evolution of information
technology (IT), play a crucial role in questions of peace and security (Reuter, 2019).
First and foremost, the most significant impact of the discussions and developments
regarding the weaponization of cyberspace in recent years has been on its influence
and the changes it has introduced to national and international security doctrines. An
important incident has been the discovery of Stuxnet (Langner, 2013), malware
developed by the US and Israel (Nakashima &Warrick, 2012) and targeted against a
specific nuclear enrichment facility in Iran. Stuxnet manipulated the industrial
control system of the facility by covertly changing thresholds and parameters of
the control software to sabotage the enrichment process. This highly specified and
hand-crafted attack on IT systems forced state leaders and decision-makers to
recognize the vulnerabilities in computer systems and the threat that arises from
the high degree of dependency on IT in economic, societal and government sectors.
Especially critical infrastructures are now perceived to be high-risk targets for state
and non-state cyberattacks. Although this was not the first cyber incident, and was
hardly news for IT security specialists, the Stuxnet event demonstrated the techno-
logical possibility of crossing the cyber-physical barrier with dedicated malware and
showed how to carry out actual physical destruction (Symantec, 2013) by remotely
accessing and altering software. It also revealed the intent and the capacities of
certain nation-states to develop and deploy such measures. In recent years states
have reacted to this development by developing defensive measures to protect
national IT infrastructures, extending national security and military doctrines to
provide legal and organizational frameworks and establishing new and dedicated
government or military institutions for these tasks. In addition, a large number of
countries have also adopted offensive strategies, included those involving cyber-
space, in their military planning and have established human and technological
capacities (UNIDIR, 2013). This situation was emphasized by similar announce-
ments by different states such as the US (US-DOD, 2018a) and the United Kingdom
(UKGovernment, 2016). In 2016, NATO also declared (NATO, 2016) that incidents
involving matters of or in cyberspace could invoke application of Article 5 of the
Washington Treaty and prompted its member states to establish necessary military
cyber capacities able to defend the alliance in this domain. A further major devel-
opment was the US adoption of a new defend forward cyber security strategy in
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2018 (US-DOD, 2018a). Declaring the ineffectiveness of defending the national IT
systems by establishing IT security measures for them, the new strategy shifts
activities outward to focus on the IT systems of potential adversaries and establishes
a persistent engagement of cyber forces. Constant activities within foreign IT
systems should, according to the strategy, provide early warning of looming attacks
and keep foreign cyber forces busy enough to prevent and deter cyberattacks in the
first place (Healey, 2019).
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2.1 The Current Situation of State-Driven Cyberattacks

When it comes to the application of cyber measures in actual physical warfare,
however, it seems that cyberattacks more often play a supporting role in military
conflicts and are currently not used for massive destruction but rather for reconnais-
sance as well as the gathering of combat-relevant information. Most of the known
cyber incidents were either cases of espionage, campaigns for political influence
(Desouza et al., 2020), targeted minor IT systems or were performed with valid user
credentials for critical IT systems gathered via social engineering and classic intel-
ligence work. Although the potential for massive destruction was suspected in some
cases, only a few cases with explicitly designed and deployed destructive cyber
weapons have been identified so far, such as Shamoon (SecureList, 2012) o
TRITON (Miller et al., 2019), both of which were deployed to sabotage central IT
systems of Saudi Arabian petrochemical companies. From a strategic perspective,
malicious cyber tools seem to have become widely accepted as an additional
measure in hybrid conflicts or similar situations that deliberately stay below the
threshold of full-fledged military confrontation. The relatively inexpensive creation
of offensive cyber capacities—compared with traditional armament—also
empowers new international actors. For instance, the Democratic People’s Republic
of Korea (North Korea) has become a relevant actor in cyberspace and has been
responsible for different incidents over the last years (Ji-Young et al., 2019) such as
the hacking attacks against a subsidiary of Sony, banks in Bangladesh or
cryptocurrency marketplaces (US-DHS, 2020). Finally, the trend toward the
stockpiling of vulnerabilities and exploits as the base material for cyber weapons
raises new international threats. Undisclosed vulnerabilities in popular software not
only provide possibilities for attacks by the withholding party but, conversely, leave
anyone using the product vulnerable to attacks by any actor which becomes aware of
the weak spot. The incidents of WannaCry (GReAT, 2017) and NotPetya (Mimoso,
2017), with their massive damage and commercial losses, are dramatic demonstra-
tion of this. Both malware campaigns exploited a vulnerability named EternalBlue
that had been harbored and stockpiled by the US National Security Agency
(Kubovic, 2018). The examples demonstrate on the one hand that states are increas-
ingly developing and deploying offensive cyber capabilities, although trying to
avoid serious damage to human life and staying below the threshold of
IHL-prohibited aggressive actions. On the other hand, military cyber units are



probably training and preparing for utilization of their capabilities in the event of
conflicts. In addition, relatively cheap military cyber capabilities are revealing
potential regional power shifts, thus increasing the probability of their application
in smaller-scale conflicts.
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3 How the Technology of Cyber Weapons and Its
Application Will Evolve

A starting point for anticipating the influence and impact of AI/ML on the militari-
zation of cyberspace, is the assessment of the possible evolvement of cyber weapons
in general as well as consideration of future challenges regarding this type of
technology. With the ever-growing automatization of all kinds of technological
processes, IT systems are increasingly being integrated into physical systems and
devices to control specific functions. Additionally, these IT systems will be further
connected with each other (like the Internet of Things) and to cyberspace in order to
perform tasks remotely (Russell, 2020). This means that defense against
cyberattacks will involve an ever-increasing range of distributed digital devices
that need to be made even more resistant against malicious influence, as well as
chain effects due to interconnections and dependencies. In addition, with the
increasing number of devices and the data they create, process or store, the amount
of information that needs to be integrated and processed to detect anomalies and
malicious operations will continue to rise. The range of possible attack vectors will
further grow and diversify. Given the necessity to react to attacks in (almost) real
time, the required decision-making must be accelerated and information processed
almost instantly. This requires decision-making based on integrated mechanisms of
autonomy or the filtering and pre-processing of information to compensate for the
relative slowness and limited capacities of human operators (Burton & Soare, 2019).
Moreover, this kind of automatization might possibly lead to a cyber-vs-cyber
situation, where attacks are directly blocked by dedicated defensive measures
without human intervention. Similar early consideration of offensive operations
and an automatic infection of possible targets within cyberspace by an
NSA-backed program called MONSTERMIND (Zetter, 2014) were exposed by
Edward Snowden in 2013. Following the US defend forward and persistent engage-
ment strategy, which will probably soon be adopted by other states, such develop-
ments will result in a further undermining of global IT security by means of the
preparatory or precautionary installation of backdoors within foreign IT systems, in
order to have the option of deploying the intended payload in time. As cyberspace is,
on the one hand, the domain of military activities but, on the other hand, also
represents the physical space that processes the transmission of any kind of action,
the IT infrastructures, being its backbone, will obviously become relevant targets
themselves. Finally, as the capability already exists, it is presumably only a matter of
time until cyber capacities will be used and deployed openly in fully-fledged military



conflicts, since situations already exist where the IT of military systems and weapons
themselves have become targets (Perkovich & Hoffman, 2019).
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4 How Artificial Intelligence and Machine Learning Could
Influence Cyber Weapons

Reflecting on the possible impact of AI/ML on cyber weapons and the militarization
of cyberspace, it is crucial to highlight that cyber and AI/ML measures are natural
siblings. “[AI and ML] share the idea of using computation as the language for
intelligent behaviour” (our italic) (Kersting, 2018). From a purely technological
perspective, AI/ML is just software: algorithms based on complex computer code
that can be integrated into decision processes. Hence, AI/ML is developed and
deployed within the same domain as cyber tools and to a considerable extent requires
similar know-how in programming, code logic and software life cycle management.
In order to be effective, cyber tools must keep pace with the latest technological
developments, software updates and the modernization of devices. To reach this
level of adaptability and extendibility they are often based on modern development
frameworks with modularized, extendable and interchangeable software architecture
[see, for example, the FLAMEmalware platform (sKyWIper Analysis Team, 2012)].
Such architecture provides an ideal platform for an extension with AI/ML compo-
nents. Additionally, computer code offers optimal conditions for creating and
facilitating training and testing environments for military AI/ML applications, as
the environment can be defined and shaped in every specific detail and according to
the intended requirements. This reduces costs and the amount of research and
development required. As described in the previous section, an important challenge
for cyber as well as other military technologies is the growing amount of information
that needs to be processed (Kersting & Meyer, 2018), in contrast to the decreasing
time to react to incidents. This dilemma involves incidents within cyberspace but
also situations where cyber tools facilitate the analysis of data and the processing of
information in order to provide the basis for decision-making concerning physical
systems such as weapons or reconnaissance systems. AI/ML algorithms, and espe-
cially modern approaches such as deep learning (Charniak, 2019), were developed
specifically for cases involving processing large amounts of data, detecting patterns
and filtering out relevant information from digital noise. According to Schörnig
(2018), the “spectrum of possible applications [of AI in the military] ranges from the
analysis of trade data to uncover clues for the proliferation of weapons of mass
destruction, to the identification of landmines that is boosted by AI with improved
ground penetrating radars.” Because of such capabilities, military AI applications are
likely to be integrated into cyber tools, as these usually have to deal with a large
amount of digital data in trying to detect relevant patterns.
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4.1 Explainability and Responsibility of AI-Enabled Cyber
Weapons

An additional aspect of this development is that the automated conclusion process
already mentioned and the resulting selection and decision about actions will be
significantly changed when combined with AI/ML algorithms. Whereas the autom-
atization of defensive cyber actions is hardly new, AI/ML are, in the sense of
technology which produces an output for a given input without allowing reconstruc-
tion of the digital reasoning process or the line of thought of the machine or software
that led to a specific decision. This creates situations in which the code produces
decisions that are no longer deducible and thus prevent humans from intervening
based on reasoning. When such AI/ML-enabled measures are used for offensive
actions, this creates serious problems in connection with the necessary human
integration and interaction (Schwarz, 2019). All these issues have already been the
subject of heated debate in connection with autonomous weapon systems (AWS)
regarding the responsibility and traceability of decisions (IPRAW, 2019; see the
chapter from Anja Dahlmann). In order to address the problem of comprehensible
AI/ML decisions, a dedicated field of research (XAI—Explainable Artificial Intel-
ligence) (Gunning et al., 2019) is working on technical concepts that allow human
operators either to follow the decisions during the reasoning process (ad-hoc XAI) or
the decisions to be recapped once they are made (post-hoc XAI). So far, these
approaches are mere theoretical concepts that lack general applicability and are
hindered by specific technical features of machine learning such as the distributed
and numerical representation of learned information (Barredo Arrieta et al., 2020).
Additionally, it is questionable whether ad-hoc explainability can be used meaning-
fully in an environment characterized by extremely short response times, as the two
conditions are mutually exclusive. The speed of reaction in combination with the
black-box character of such tools may possibly prevent any opportunity for double-
checking of decisions by human operators or for their intervention. Even if the code
itself does not pull the trigger, human operators might tend to trust the decisions or
pre-decisions of machines and follow their suggestions due to a lack of alternatives,
time pressure or perceived lack of human influence or oversight (Bajema, 2019). As
AI/ML algorithms are trained for specific situations and decisions before they are
integrated into productive systems, the operators of the finished application might
also be unlikely to know the specific details of the training data, nor have any chance
to see, perceive or understand the assumptions and pre-conditions of this data.
Besides, this inexplicability could lead to critical junctures in situations marked by
high international tension. State actors on the brink of military conflict might lack the
ability to communicate and explain automatically triggered actions or conclusions
that led to their activities to other conflict parties, thus undermining a valuable
measure of immediate conflict reduction. As unlikely as such a scenario currently
seems, the discussion of application of AI/ML within the ongoing process of
modernization of nuclear weapons arsenals (Field, 2019) is an example that high-
lights the consequences that are at stake (Boulanin, 2019). The application of AI/ML



for militarized tools within cyberspace reveals an overall similarity to AWS (see the
chapter from Anja Dahlmann). The debates on norms and limitations of the appli-
cation of automated cyber tools could thus benefit from the lessons learned about the
human role within the decision-making loop of technological systems and its
consequences.
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4.2 AI and the Pitfalls of the Attribution of Cyberattacks

The black-box character of AI/ML systems could also aggravate other features of
cyberspace that are currently considered to be problematic, both in terms of the
application of international humanitarian law (IHL) and of established norms of state
conduct. One of these features of cyberspace concerns the attribution problem (Rid
& Buchanan, 2015). Whereas the possibility of identifying attackers is essential for
IHL and the states’ right to use military force for self-defense (Grosswald, 2011), this
task is complicated, time-consuming, and a forensic challenge due to the technical
features of the cyberspace (Riebe et al., 2019). Digital information inherently
contains a high degree of ambiguity and virtuality. Information can easily be copied,
modified, or actively tailored to set false tracks. Consequently, the meaningfulness
of information about cyber incidents needs to be critically evaluated to prevent false
assumptions and reactions. Applying AI/ML measures to offensive operations will
further reinforce this ambiguity and intensifies the problem of gaining a clear picture
of what happened and identifying the actors behind it. The automatic AI/ML-driven
evaluation of information about an incident inherently contains the problematic
aspect of some conclusions about the origin of an attack being inadvertently mis-
leading and the question of how to react proportionately. Such failure could be
triggered either by incorrect or insufficiently trained algorithms, biased input infor-
mation or by following intentionally created false trails (Herpig, 2019). Although the
inner state of an AI is considered a black box, this condition is the result of the
learning model and the data used to train the AI. Assuming that an attacker obtained
knowledge of the model of an applied, static AI/ML and the data which had been
used for its training—e.g., through leaks, reconnaissance, hacks, or insecure manu-
facturers’ supply chains—it would be possible to replicate such an AI itself and thus
calculate the output that this AI/ML would generate for a specific input. Such
knowledge could enable an attacker to tailor its attacks either to avoid detection or
to generate incorrect conclusions (Apruzzese et al., 2019). Finally, the development
and application of AI/ML in commercial, non-military IT systems, especially in the
field of IT security and automated network security surveillance and defense, will
produce spill-over effects in military applications. This development will increase
acceptance of such systems and put constant pressure on military decision-makers to
deploy them to gain a supposed strategic or tactical advantage.
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5 The Negative Impact on Arms Control of Artificial
Intelligence in Cyber Weapons

The developments outlined above add to the existing challenges involved in apply-
ing stabilizing measures in security policy to cyberspace, such as working toward
peace-sustaining cyber armament reduction and cyber arms control measures.
Firstly, a general problem of cyberspace is its virtual character (Reinhold & Reuter,
2019a). Data has neither a specific geographic location nor a physical representation.
It can be reproduced seamlessly and is not limited to a specific and unchanging
location but can instead be distributed across different places, such as in cloud
applications. As explained above in connection with the problem of data ambiguity,
integrating an AI/ML system into existing cyber measures further increases aspects
of virtuality and non-tangibility and thus undermines established concepts of arms
control even more than software itself already does (Reinhold & Reuter, 2019c).
Besides obvious dual-use problems (Riebe & Reuter, 2019), in practical terms the
effortless duplication of digital data that concerns ready-made AI/ML applications as
well as training data hinders the control of proliferation of military-grade AI/ML
technology (see the chapter from Kolja Brockmann). This also negatively affects the
ability to measure specific aspects of a regulated item, which is a core requirement of
arms control (Burgers & Robinson, 2018). Like cyber tools in general, AI/ML
algorithms are computer code, or even more abstractly, structured digital data.
They are thus immune to any kind of countability and provide few starting points
for measuring parameters that could provide meaningful classification or comparison
with permissible thresholds. This missing feature also means a distinction between
civil and military AI/ML systems that is capable of going beyond the mere decla-
ration of the intended application cannot be made while also preventing any kind of
classification of the capacity and performance of an AI/ML system. This situation
constitutes a major obstacle to the development of viable verification approaches for
AI/ML applications. Apart from that, as the performance of an AI/ML system
depends to a large extent on its training, the question arises as to whether the trade
and proliferation regulation of training data—either artificially, as tailor-made
datasets or taken from real-life samples and situations—could provide a starting
point for arms control and nonproliferation regimes. The chapter “Arms Control for
Artificial Intelligence” in this volume on arms control for AI will further evaluate
these possibilities and challenges.

6 How Can Artificial Intelligence Support Cyber Arms
Control?

Apart from the challenges described above about how AI/ML algorithms can add to
the already complicated cyber weapons debates and the attempts at peaceful devel-
opment in this domain, such technologies could possibly also evolve into useful



tools for cyber arms control and disarmament. In general, AI/ML algorithms are a
good tool for combining and processing large amounts of different, heterogeneous,
often noisy and rapidly changing data to detect patterns, regularities and hidden
information (Lück, . A specifically powerful aspect of this technology is the
ability to identify similarities within data and find useful matching items that do not
fully correspond to the trained items but relate to them with a high degree of
certainty. This kind of detection quality is usually a problem that cannot be solved
with hard-coded deterministic rules. By contrast, an AI/ML algorithm is able to
identify relevant detection parameters during its training phase, establishing a self-
developed filter for relevant and irrelevant information. As a result, AI/ML algo-
rithms could prove to be the right tool for managing the information overload of IT
systems (Kaufhold et al., ) and the challenge of finding the needle in the
haystack. Such challenges could be the task of searching for anomalies in informa-
tion provided by states in the context of confidence-building measures or processing
surveillance imagery to detect military installations. A meaningful, currently
unexplored application could be to control the proliferation of cyber weapons
(Silomon, ) by monitoring the distribution and occurrence of specific parts of
weaponized computer code. As already mentioned, code can easily be copied and
will, in almost all cases, be slightly modified or extended to fit into existing cyber
weapons, to work with the specific tools and programming frameworks, or to match
specific target criteria. Any detection mechanisms searching for an exact piece of
computer code will presumably fail to detect such modified versions. An AI/ML
algorithm could be trained to circumvent this problem and to provide at least
indicators and probability measures of whether and to what extent computer code
matches a specific sample. A similar approach could be used to detect and identify
actors behind cyberattacks. Even if this is not directly a task of arms control, it
overlaps with the regulation of cyber weapons, because an actor is visible, detectable
and identifiable by its behavior, by technical operations performed in foreign IT
systems and by the tools employed (Sibi Chakkaravarthy et al., ). Whereas it is
possible and common to counterfeit these indicators in order to lay a false trail, an AI
could be used to detect unconscious similarities of the attackers’ style, habits and
methods. Institutionalized military cyber actors in particular develop their know-
how and the required skills over time. They create, extend and modify their own
toolsets and cyber weapon arsenals, which are then reconfigured, combined and
adjusted for a specific operation (Olszewski, . This means that specific actors
often have digital fingerprints regarding their customary tools and hacking strate-
gies. Nearly every cyber activity creates digital traces such as small pieces of code
that attackers have previously used to perform their tasks, manipulate files, change
system settings or log entries or IP addresses of remote IT systems where data has
been copied. Such detectable traces are called samples and are already used to
compare new code to known samples from prior incidents in order to draw conclu-
sions about an alleged actor. Although captured samples like these rarely match
existing samples perfectly, they do contain similarities as they come from the same
complex cyber weapon project, use similar methods and approaches, or are more
advanced versions of each other. Detecting these similarities and identifying cyber
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weapons is a task where AI/ML approaches and algorithms are highly suitable
(Roberts, 2019). For example, such identification measures are already used by IT
security forensics when analyzing cyber incidents (Kanzig et al., 2019). They are
often combined with further indicators such as specific habits and ways of program-
ming, the structuring of computer code or recurring phrases and names. Lastly, the
black-box character of AI/ML applications could also be an advantage for arms
control measures. An essential element of practical control and compliance moni-
toring of arms control regimes is the requirement that the actors involved do not want
to disclose any sensitive information about the regulated or controlled item (Kütt
et al., 2018). This requires technical procedures where participating parties—usually
states—are required to disclose as little information as possible when verification is
performed and verification devices are developed that conceal all processing steps.
In addition, the participating parties would have to be convinced that the results will
be reliable and trustworthy. Such a tool, in which a defined input leads to a binary
decision of is or is not a weapon, could be achieved through AI/ML procedures. To
prevent doubts regarding the reliability and the acceptability of the algorithm’s
decision it would be necessary to prevent any modification or tampering and to
preserve the integrity of the algorithm and its trained state. This could be achieved by
securing the AI/ML application with digital seals, cryptographically calculated
unique values—usually very long numbers—like checksums and hashes that repre-
sent a specific state of arbitrary digital information. A recalculation of the digital seal
would immediately reveal any modification as it would result in a different number if
the information has been changed (Putz et al., 2019). These mere outlines of
applicable approaches presumably have other peculiarities that need to be taken
into account when it comes to real-world applications. Although this issue goes
beyond the scope of this chapter, it shows that, despite new challenges, AI/ML
approaches can also contribute to arms control.
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7 Conclusion

This assessment has provided an overview of the possible development and impact
of AI/ML methods on cyber weapons. It is based on current trends and technical
AI/ML developments as well as on the already ongoing application of or research on
AI/ML in other military fields of operation. The assessment shows that the military
application of AI/ML for cyber related tasks will probably exacerbate an already
tense situation involving a cyber arms race on the one hand and a lack of interna-
tional measures to prevent destabilizing and harmful effects on the other. Established
measures for arms control, whose application to cyber weapons is already hindered
by specific technical features of these tools, will face further challenges. Further-
more, for military decision-makers AI/ML algorithms seem to provide solutions for
enhancing their weapon systems and battlefield management capabilities through
their ability to integrate, process and refine large amounts of digital data. This could
provide a strong incentive for military decision-makers to pursue and apply these



approaches. However, the assessment also showed that, in addition to the necessary
questions of peace and conflict research regarding AI/ML in cyber weapons, tech-
nological developments reflect ongoing debates about lethal autonomous weapon
systems. This makes it possible to participate in these discussions and to benefit from
lessons learned. Finally, AI/ML approaches could also provide valuable insights into
the challenges of arms control for cyber weapons and help to circumvent some of its
technological pitfalls. Either way, artificial intelligence and machine learning are just
beginning to find their way into military cyber systems, and the time has come to
critically accompany this trend and conduct further research in order to promote
peaceful development of cyberspace.
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Drones and Lethal Autonomous Weapon
Systems

Anja Dahlmann

Abstract Computational methods such as machine learning and especially artificial
intelligence will lend weapon systems a new quality compared with existing ones
with automated/autonomous functions. To regulate weapon systems with autono-
mous functions with the tools of arms control a new approach is necessary: This
must be focused on the human role in decision-making processes. Despite this focus,
the enabling technologies involve some specific challenges regarding the scope and
verification of regulation. While technology will not solve problems created by the
use of technology, it may be able to offer some remedies.

1 Introduction

As one type of artificial intelligence (AI), machine learning (ML) exerts its influence
on the military realm and arms control in a number of ways. The arguably most
controversial application of ML has as its objective inflicting severe physical
damage and the killing of humans. This does not imply a self-aware AI-enabled
killer machine that deliberately chooses to turn against humans. It is much more
likely that it will be a weapon system with weak AI for specific tasks to support the
selection of and engagement with targets, leading to attacks without human control
by so-called “lethal autonomous weapon systems” (LAWS). Such autonomous
functions compress the targeting cycle by eliminating delays resulting from com-
munication and human decision-making during an attack. Consequently, develop-
ment and implementation of data-driven techniques like AI will make new military
options available while posing new challenges for arms control. It will make new
decision-making processes to support human capabilities possible, act as a force
multiplier, and accelerate the action-reaction cycle on the battlefield. This increase in
speed may provide a substantial military advantage. The lack of communications
links will also enable operations in secluded or contested environments that would
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not be possible with remotely piloted systems and would be very dangerous with
manned ones. In some circumstances, such as air defense against incoming muni-
tions, target selection and tracking can also be more precise than equivalent actions
carried out by a human operator. Such potential military advantages come at the cost
of risks of escalation, instability, unpredictability, erosion of international humani-
tarian law (IHL) and ethical dilemmas.
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So far, no common international definition of LAWS1 exists, but the notion that
AWS are armed platforms that can select and attack a target without further human
intervention is broadly accepted (ICRC, 2016, p. 1). The targeting functions are
directly relevant to the use of force, and hence are referred to as “critical.” Other
functions such as mobility, health management, interoperability and battlefield
intelligence (Boulanin, 2016, p. 7) are less relevant. This technology-agnostic
definition is useful for arms control debates because the enablers of the functions
are irrelevant from a legal perspective, because the law addresses the humans and
their role during attacks. Nevertheless, certain technologies are necessary for elab-
orated and flexible fighting capabilities that set future LAWS apart from existing
autonomous/automated weapons systems such as counter rocket and artillery and
mortar (C-RAM) systems like Phalanx, or sentry guns such as Samsung SGR-A1,
but also in self-destructing drones such as Harpy.

The autonomous functions can be implemented in drones, submarines, ships or
land-based systems such as tanks and cars. They can be part of single platforms,
swarms, human-machine teams or battlefield management systems. Autonomous
targeting functions may also become relevant for the use of hypersonic glide
vehicles. Due to their high velocity a plasma layer forms around those missiles,
rendering direct communication impossible. Autonomous functions might be an
option for dealing with this lack of human influence—or to assist in defending
against them.

This chapter discusses the role of AI in the development of LAWS, the specific
challenges of AI and software for an arms control regulation of LAWS, and
situations in which those techniques could be beneficial to arms control.

1The term “autonomy” can be easily used instead of “automation” without leading to a different
outcome. The most precise term for addressing “LAWS” would probably be “automation in the use
of force” or “automation in targeting functions”. If not stated otherwise, I use the term “autonomous
weapon systems” or “LAWS” as shorthand for this meaning. I apply the term “weapon systems”
instead of “weapons” to signify its potential functional and geographic distribution: The various
functions do not have to be located on just one platform but can be connected through communi-
cation links (Asaro, 2012, p. 690, fn. 7).
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2 Drones and LAWS: Technology and Functions

To understand the challenges to arms control posed by LAWS, a look at the enabling
technologies of autonomous functions is crucial. Since remotely piloted drones are a
predecessor to LAWS and imply a certain logic related to autonomy, they will serve
as the starting point for those deliberations.

2.1 Remotely Piloted Drones: Steps Toward Autonomy

The term “drone” is usually used for unmanned (or uninhabited) aerial vehicles,
regardless of whether they are remotely piloted or have autonomous functions. They
are also referred to as “unmanned aerial vehicles” (UAV) or—if armed—“unmanned
combat aerial vehicles” (UCAV). While unmanned vehicles can be deployed on the
ground, or in or under water, aerial vehicles are the most prominent ones with regard
to military use, because the aerospace has fewer physical restrictions and hence is
much easier to navigate than other domains.

UAV can be used for surveillance and reconnaissance as well as attacks. Their
capabilities have become more advanced in the past few decades. Still, currently
deployed UAV are slower than manned aircraft and limited to quite specific scenar-
ios such as surveillance, targeted killings in asymmetric conflicts, border patrols and
armed oversight of ground patrols (Fuhrmann & Horowitz, 2017, pp. 402–403).
They can, however, fly longer and farther than manned systems, improving situa-
tional awareness or range and closing the sensor-to-shooter gap.

The new military options offered by UCAV have sparked the interest of numer-
ous countries: According to Bergen et al., so far 39 countries have procured armed
drones, 12 of which have conducted armed drones strikes. Altogether, 29 countries
and groups of countries have invested in further research and development of armed
drones (Bergen et al., 2020, pp. 2–4). Future developments will most probably
enable air-to-air combat with stealth capabilities, improve self-defense capability,
and make dynamic manned-unmanned or even unmanned-unmanned teaming pos-
sible (for example the demonstrators X-47B, Taranis, nEUROn and the concept for
Skyborg). Those capabilities will lead to increasing autonomy in various functions
of the weapon system and different steps of the targeting cycle—remotely piloted
UCAV are opening up a pathway to more autonomous weapon systems. For
example, communication between drone, satellite and operator and vice versa causes
a substantial time delay, while the communication link can break down or be hacked
(see, e.g., Dickow, 2015, p. 10). By countering such shortcomings an increase in
machine autonomy in various functions from navigation to target selection can
increase the operational efficiency and effectiveness of UCAV.
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2.2 LAWS: A New Quality of Autonomous Functions
Enabled by AI and ML

The technology behind autonomous functions is a combination of various elements
from the field of robotics. A robot is a machine that can sense the environment,
process this information, and act accordingly. It carries out these tasks by means of
sensors, software, processors and physical means of manipulating the environment
and/or moving around. Recent progress in the development and miniaturization of
sensors, energy supply, processors and other components as well as software
capabilities (e.g., computational methods often referred to as AI and ML to enable
more sophisticated pattern recognition) have led to highly improved functionalities
of integrated but especially of embedded systems such as drones (see, e.g., Dickow,
2015; Erz, 2020, p. 26). Sensors are, for examples, optical cameras, infrared
cameras, hyperspectral and full spectrum imaging (HSI), light detection and ranging
(LiDAR), inertial navigation systems (INS) and satellite navigation, and radio
detection and ranging (RADAR) (Erz, 2020, pp. 15–22). The data collected by
these sensors require different levels of processing power and offer different infor-
mation such as distance, position or velocity.

The improved capabilities must not, however, be confused with the cognitive
capabilities of humans or other living beings. The terms “artificial intelligence” and
“machine learning” in particular are anthropomorphizing and misleading and dem-
onstrate the importance of precise terminology in discussing the issue of LAWS. In
that regard, roboticist Noel Sharkey warns: “The shadow of mythical AI looms large
in the background” (Sharkey, 2012, p. 121). This often leads to an overestimation of
capabilities, especially the ability of a weapon system to understand the operational
context (Dahlmann & Dickow, 2019, p. 11). Furthermore, the terms “AI” and “ML”
lack clear definitions. For example, the European Defense Agency (EDA) had to
define a shared least common denominator understanding for its member states
regarding defense cooperation: “AI is the capability provided by algorithms of
selecting, optimal or sub-optimal choices from a wide possibility space, in order to
achieve specific goals by applying different strategies including adaptivity to the
surrounding dynamical conditions and learning from own experience, externally
supplied or self-generated data” (European Defense Agency, 2020b, p. 36). Ulti-
mately, this definition describes weak AI for solving specific problems.

Two crucial technological capabilities which enable autonomous targeting func-
tions are image recognition (based on, for example, data from electro-optical cam-
eras) and the identification of behavioral patterns: both require ML and often AI to
analyze the sensor data. The necessary video footage is provided by camera systems
mounted on drones such as the Gorgon Stare program. Only a fraction of the footage
can be watched, tagged and analyzed by humans. Here ML and AI can provide
further insights. Relevant projects include, for example, Mind’s Eye, Skynet or
Maven. They can also be regarded as a preparation for autonomous targeting
functions because they (are supposed to) support human decision-making in target
selection. Skynet is a project by US intelligence agencies to create target lists via



behavioral signatures based on mathematical methods using cellphone metadata.
Those signatures supposedly identified potential terrorists who became the target of
drone strikes or other sanctions in Pakistan, Yemen and Somalia in 2010 (The
Intercept, 2015a, 2015b). In order to do this, the NSA gathered metadata such as
call data, user locations or the swap of SIM cards from cellphone users in a certain
area and stored them on cloud servers. The National Security Agency (NSA)
compared this information with data from known terrorists (training set) in order
to identify potential new terrorists. They applied a complex combination of
“geospatial, geo-temporal, pattern-of-life, and travel analytics [. . .] to identify pat-
terns of suspect activity” (The Intercept, 2015a) and used relationships in this data to
specify the “likelihood of being a terrorist” (Grothoff & Porup, 2016) using more
than 80 different variables. Based on this, the US created a so-called “kill list”
(Naughton, 2016). This procedure was not only legally questionable but also
technically flawed: The basic assumption that “terrorist behavior” is identifiable
and different is doubtful, the method produced many false positives (i.e., people
wrongly suspected of being terrorists), the training data set was quite small and the
same data was used for training and testing.
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Project Maven is a collaboration between the Pentagon and private companies
such as Google and Palantir. However, following the strong opposition voiced by its
employees Google decided not to extend its contract in 2019. Project Maven is an
image-recognition project using algorithms based on the open-source Google tool-
box TensorFlow to analyze masses of drone surveillance footage and convert mere
data to intelligence. It is supposed to distinguish between different structures (e.g.,
detect and classify people, vehicles and other objects) and track them. This helps
analysts to gather information and possibly helps prioritize enemy targets. A neces-
sary breakthrough in the development of LAWS would be the creation of a real-time
surveillance platform and subsequent battlefield command and control without
human involvement (Weisgerber, 2018; Wiggers, 2018).

Data-driven computational methods can effectively support human decision-
making in the targeting process. Or, as Saab’s Chief Strategy Officer Christian
Hedelin put it: “We come from a world where we throw away most of the data
just to find certain signal characteristics, to a future where we will be able to squeeze
so much more information out of the data that our sensors gather” (European
Defense Agency, 2020a, p. 37). These methods can cause some specific, technical
challenges, however: First, the training data needs to be appropriate for the actual use
of the algorithms. If the dataset cannot be generalized, is incomplete or not robust,
the results will be problematic, such as being biased or unpredictable. While a great
deal of civilian/commercial imagery for training algorithms exists and is easily
accessible, the data for military purposes is very limited and restricted. This makes
it difficult to train AI algorithms for such use cases and can cause the errors described
above. For example, self-driving cars struggle with minor (potentially adversarial)
alterations to traffic signs and may speed up instead of slowing down or stopping
(see, e.g., Xiao et al., 2019, pp. 3968–3969). Because similar issues with adversarial
AI could affect military applications, DARPA established for example the project
Guaranteeing AI Robustness Against Deception (GARD) to establish theoretical ML



system foundations for identifying system vulnerabilities and creating effective
defenses against such attacks (Draper). The unpredictability of AI is addressed by
attempts like Explainable AI to unpack the black box of neural networks, but it
remains a challenge (see, e.g., Voosen, 2017 and for a military context Turek, 2016).
Such linear systems are additionally prone to path dependencies that can perpetuate
errors throughout the rest of the processing sequence. In the process of target
selection those might accumulate and foster unpredictable outcomes (iPRAW,
2017).
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To sum up: While AI can support human decision-making and significantly
enhance operators’ situational awareness, it cannot be left up to AI alone to make
irreversible decisions such as killing human beings.

3 LAWS Necessitate a New Perspective on Arms Control

To discuss the challenges posed by AI and software for the regulation of LAWS we
must consider the current state of the debate on LAWS.

3.1 The Arms Control Debate on LAWS

LAWS have been discussed internationally for less than 10 years (even though initial
thoughts were published much earlier, see, e.g., Altmann & Gubrud, 2004) in the
context of human rights and humanitarian arms control, but the interest of states,
NGOs, academia and media has grown rapidly. UN platforms for those debates are
the Human Rights Council, the General Assembly and, most importantly, the
Convention on Certain Conventional Weapons2 (CCW). Within the CCW frame-
work and beyond that, various regulatory options exist for addressing (at least some
of) the specific challenges posed by LAWS. They range from a legally binding CCW
protocol, an international treaty between like-minded states, to soft law measures
such as a political declaration or identification of best practices. The different
instruments are not exclusive but can be combined, such as by adding best practices
for weapon reviews to a CCW protocol.

Most supporters of a ban on LAWS are them from the Global South, Austria is the
only EU member state. While many EU member states, along with the EU External
Action Service, call for human control in the use of force, they do not endorse hard
law measures. Instead, many endorse soft law such as a political declaration.
According to its Federal Foreign Office, Germany regards such measures as a first

2Convention on Prohibitions or Restrictions on the Use of Certain Conventional Weapons Which
May Be Deemed to Be Excessively Injurious or to Have Indiscriminate Effects, concluded in 1980,
entered into force 1983, amended in 2001.



step toward a legally binding document (Maas, 2018). The United States and Russia,
but also, e.g., Australia, India and Turkey oppose any and all regulation. China stated
support for a ban of use but did not follow up on this and defined LAWS as weapon
systems without any option whatsoever for intervening. Even though weapon
systems lacking such options would be highly problematic, they are also quite
unrealistic.
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Civil society, most prominently the Campaign to Stop Killer Robots, state
representatives and other actors have identified various concerns regarding LAWS
from various perspectives. Most of them boil down to lack of situational under-
standing of the weapon system deployed, of the opaque process, unpredictable
outcomes of certain computational methods and the inherent necessity for legal
and ethical decisions to be made by humans.

Operational Concerns Major operational concerns of military leaders include
fratricide or failing to fulfill operational goals due to lack of situational understand-
ing (iPRAW, 2018a, p. 11). Military decision processes are designed in a way aimed
at ensuring the best possible situational awareness during armed conflicts. They can
be substantially supported by assisting technologies, but ultimately decisions are
taken and responsibility for them accepted by humans (“Legal concerns” below).
These specific decision-making processes are often described as targeting cycle,
which can be deliberate in the case of a planned action or dynamic when the situation
calls for swift action. The application of autonomous functions in this targeting
process can present the human soldier with a challenge in making meaningful
decisions because of the increased speed required and effects such as automation
bias, meaning the tendency of humans to trust computer decisions without any
deliberation (iPRAW, 2018a, p. 12; Hughes, 2020; for considerations on the use
of LAWS in the NATO targeting process Ekelhof, 2018, especially pp. 21–22). As
Hughes argues, instead of “providing near-total situational awareness, AI and
automation will make the fog of war much worse for warfighters” (Hughes, 2020).

Legal Concerns With regard to the use of autonomous targeting functions in armed
conflicts, several fields of law are pertinent. Primarily, international humanitarian
law (IHL) applies. To abide by IHL, LAWS would, for example, have to involve
discriminating and proportionate use. While this might be possible in very limited
circumstances, many combat situations would probably be too complex and
dynamic for a machine to develop an adequate level of situational awareness (see,
e.g., Geiß, 2019, pp. 45–46). Closely linked to this is the principle of precaution:
during planning and attacks, military decision-makers must adopt all measures
necessary to avoid harm to civilians. To be able to adapt to unforeseen situations
(that have not been pre-programmed), human judgment will probably be necessary,
which calls for a human in the decision loop (Geiß, 2019, pp. 49–50). In this regard,
the ICRC also stresses the lack of predictability that comes with autonomous
functions (ICRC, 2021, also emphasized by Venkatasubramanian, 2019). In addition
to this, the potential delegation of decision-making to machines raises the question
whether legally relevant decisions have to be made by a human. The ICRC argues
“that the law is addressed to States and humans” and that combatants “will require a



minimum level of human control over weapon systems with autonomy in their
critical functions so that they can effectively make legal judgements [. . .] in specific
attacks” (ICRC, 2018b, p. 1; also iPRAW, 2019a, p. 11).
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Ethical Concerns The ethical dimension of autonomy in weapon systems has
attracted a great deal of philosophical attention because autonomy is a highly-
loaded philosophical concept in itself and the transfer of this term to machines is
inherently problematic. In addition to this dimension, two other aspects are discussed
in the literature: the possibility of designing ethical machines and the role of human
dignity in the use of force. Concern about the violation of human dignity is rooted in
Kantian ethics. Briefly, killing human beings in war (i.e., violating their right to life)
without violating their dignity requires a moral agent who recognizes them as human
beings and not just as objects or data points selected by an algorithm (iPRAW,
2018b, p. 12, based on Asaro, 2016). As the ICRC puts it: “The central argument
here is that it matters not just if a person is killed and injured but how they are killed
and injured” (ICRC, 2018a, p. 10).

Security Concerns Concerns from the security perspective are linked to the oper-
ational as well as strategic level. Altmann and Sauer identify two dimensions of
instability: First, the “military instability with regard to the proliferation of arms and
the emergence of arms races” (Altmann & Sauer, 2017, p. 120), that is, on a regional
or global level. Here, proliferation could occur horizontally (from states that have
LAWS to those that do not possess the technology) and vertically in “an
uncontrolled build-up of arms that drives up military expenditure and exacerbates
the security dilemma” (Altmann & Sauer, 2017, pp. 120–121). Second, the opera-
tional level includes crisis instability and escalation. Here, the potential increase in
operational speed adds to the usual instability in armed conflicts and causes a
substantial change in warfare. While the early-warning times for nuclear missiles
offer at least minutes to react, the time slot for autonomous weapons could be
seconds.

Overall, the use of computational methods in the targeting process raises ques-
tions of considerable urgency related to the human role in the use of force. Accord-
ingly, the human-machine interaction becomes a focal point for arms control
questions related to LAWS. This constitutes a shift because arms control is usually
concerned with the quantity of weapons or military capabilities, not with the
targeting process and details of military procedures.

3.2 Human Control: The Decision-Making Process as a New
Subject of Regulation

As shown above, the relevant norm for the regulation of LAWS is that of human
control over the use of force, which is a technology-agnostic perspective on LAWS.



Nevertheless, the technologies that enable autonomous functions pose a set of
specific challenges for arms control regulations which will be discussed below.
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Since autonomy in weapon systems relates to software-enabled functions instead
of physical platforms, the definition of LAWS is highly disputed. For this reason, a
definition that addresses the human role and the decision-making procedures seems
to be more sensible than not considering these aspects. Specifying the human
involvement is a challenge in itself. Even though the human role might have been
an implicit part of the negotiations concerning land mines and weapons of mass
destruction (WMD) (Human Rights Watch and Int. Human Rights Clinic, 2016,
pp. 10–12), the perceived impending autonomy of machines has trained the spotlight
on this issue. The discussion of the human role intensifies—and will possibly
replace—the search for a technical definition, but states parties are still, on the one
hand, using very similar terms that mean very different things (Ekelhof, 2017), and
on the other using different terms as though they were synonymous. Human control
in the use of force can be understood as a two-step approach enshrined in the design
and use of an unmanned weapon system. First, the human operator(s) or commander
(s) must gain a situational understanding of the weapon system and the environment
before, during, and after an attack. Second, the human must be able to intervene
during an attack if any unforeseen changes occur (iPRAW, 2019a, building on
Human Rights Watch and Int. Human Rights Clinic, 2012; Roff & Moyes, 2016;
Article 36, 2016). The details of implementation depend on the actual context of use,
meaning that the level or type of human control adequate for abiding by IHL or
ethical standards may vary (Amoroso et al., 2018). While not all states parties
adopted this terminology (some actively oppose it, e.g., the United States), the
overall concept of human control became a central point of reference in the debates
at the CCW meetings.

Consideration of a regulation and its verification in this chapter is based on the
assumption that states agree on a norm of human control in the use of force within
the framework of humanitarian arms control. ‘Human control’ might be an evolving
principle of IHL that could be captured in the preamble to the CCW or the first
Additional Protocol to the Geneva Conventions (Rosert, 2017, p. 1). It can be
regarded as a new or dormant principle of IHL that should be acknowledged in a
legally binding document or politically-binding declaration. More concrete norms
can be derived for spelling out details of this rather abstract concept (iPRAW, 2018c,
p. 14). To capture this concept, at some point any regulation would have to address
military decision-making process (including preceding steps like training), the
technology, and the operational context (Campaign to Stop Killer Robots, 2019).

3.3 Specific Challenges Arising from Enabling Technologies

In addition to definitions and new aspects of arms control, regulation of LAWS
would have to incorporate the dual-use aspect of the enabling technologies and



would be quite limited in its effectiveness due to properties specific to software
and data.
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Many components of LAWS will be dual-use, meaning they are used for both
civilian and military purposes. In addition, they often originate from the commercial
realm. Arms control regulation must not hamper commercial development and
peaceful use of AI, as many delegations have stated during CCW meetings. The
distinction is probably quite simple with regard to weapon platforms or specific
targeting applications and interfaces. The lines blur, however, with regard to infra-
structures such as the use of satellites to establish communication links or servers to
store data (Erz, 2020, pp. 37–38). From an arms-control perspective, not only
commercial use would be acceptable but also military use for functions like naviga-
tion or surveillance.

Instruments such as weapon reviews (e.g., Article 36 of the First Additional
Protocol to the Geneva Conventions) will have difficulty grasping both software
and data-based algorithms. These reviews require states to check that a weapon can
be used in accordance with IHL, meaning in at least one use case. Those reviews
could be a helpful addition to the norm of human control but would probably be
insufficient on their own to deal with LAWS based on data-driven computational
methods. For example, the reviews would have problems considering the database
and could not deal with systems that learn online (i.e., during use). It is also unclear if
every software update that affects the targeting process would be subject to review.

If states agreed on legally binding regulation of LAWS, verification measures
could become relevant. The type and effectiveness of such measures is a technolog-
ical question, but ultimately depends on the political will of states parties. A
comprehensive verification of human control over the use of force would be quite
challenging and, since differences in the operational context call for different
applications of human control, the verification measures would have to be flexible.
As initially indicated by Gubrud and Altmann, verification could include measures
before, during and after the deployment of a weapon system such as inspections of
the design of hardware and software, consideration of rules of engagement or
software-enabled tracking of the human role. Quite a few challenges would arise
from the characteristics of LAWS, because the software could be altered quite easily
after inspection, the human role is a qualitative feature that is hard to define and the
autonomous functions are hard to detect from the outside, so that verification tests
could not be based on suspicious cases.

A verification regime for LAWS could include various pillars, including a
“compliance model based on transparency and confidence-building measures,
inspections, technical safeguards, and forensic investigation of suspicious incidents,
together with verification of human control and enforcement of accountability in the
use of violent force” (Gubrud & Altmann, 2013, p. 4), possibly monitored by a treaty
organization. Verifying human control is at the core of this approach. Gubrud and
Altmann suggest identifying a set of technical indicators to illustrate the human role
during attack. Such indicators could include the existence of suitable hardware to
establish a communication link between operator and platform, video feeds from
cameras that monitor the operator and software solutions to track actions during an



attack. For reasons of military secrecy, data collected during attacks cannot be made
public. Analogous to the black box in airplanes, the data itself could be stored by the
nation that deploys the weapon system, while hash codes would provide a digital
seal to prove that the data had remained unchanged, which is similar to a blockchain.
In suspicious cases, the state in question could provide the actual data recorded
(or parts thereof) to a trusted third party that could assess the human role in the attack
and check whether the data has been tampered with (Gubrud & Altmann, 2013,
pp. 6–7). Even though this approach fits best with remotely piloted drones with
increasingly autonomous functions and might have problems with more distributed
systems like swarms or battlefield management systems, it is a valuable starting
point. This kind of verification measure would “reverse the usual logic of verification
(detecting non-compliance) by attempting to continuously track the human involve-
ment in an attack” (iPRAW, 2019b, p. 4).
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Computational methods could assist in the analysis of the huge amounts of data
resulting from such a monitoring system. Effective verification of human control
might only be possible by means of big data evaluation to detect suspicious
behavioral patterns or other indicators. If the verification measures included a
video feed monitoring the operator (given that this type of human control is suitable
for the weapon platform and operational context), AI techniques could, for example,
analyze the operator’s eye movements or other behavioral features.

3.4 Positive Impact of AI on Arms Control for LAWS

The assistance of verification measures is just one application where AI and ML
could support arms control efforts for LAWS instead of challenging them. Due to the
lack of concrete regulation, these deliberations are quite vague and hypothetical.
However, real-life examples of similar applications exist: For example, AI and ML
have been used to evaluate large databases in order to identify war crimes in Yemen.
In connection with that matter, the Organization Yemeni Archive collects open-
source data from journalists and citizens as well as social media. It applies
blockchain techniques in order to protect the data. Using this database, researchers
from the Global Legal Action Network trained algorithms to identify the use of
certain types of illegal weapons in this database (Global Legal Action Network,
2020; Hao, 2020). Even though the training requires a great deal of human effort, the
subsequent application of the algorithm will be much more efficient than human
work alone. This can provide important evidence for human rights organizations in
legal trials.

Beyond that, software solutions might be able to install some sort of ethical
behavior in machines. At least, that is what Arkin’s concept of an “ethical governor”
implies when it translates rules of engagement, which can be based on ethical
assumptions, into machine behavior. “This ethical behavioral control approach
strives to directly ingrain ethics at the behavioral level, with less reliance on
deliberate monitoring to govern overt behavior” (Arkin, 2009, p. 133). The core



algorithm follows rules similar to those the military uses to teach new soldiers. Arkin
himself would only deploy this ethical governor in very limited circumstances and
environments having a simple structure and admits that the implied assumptions
about the situational awareness of the machine are quite optimistic (Arkin, 2009,
pp. 126–127).
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4 Conclusion

The extensive and increasing use of remotely piloted UCAV is only the first step
toward weapon systems with autonomous (targeting) functions in all domains. This
development is enabled by developments in various fields of robotics including data-
driven computational methods such as AI and ML. This withdrawal of the human
yields substantial military advantages but also introduces challenges in operational,
legal, ethical and security dimensions. While arms control regulation of LAWS
should be technologically agnostic and focused on the human role, it will still be
shaped by the specific technological capabilities and limitations of AI. The potential
lack of predictability (due to the black-box effect and non-deterministic/probabilistic
methods) or situational understanding (due to lack of human cognition, unfit
datasets) could be mitigated by an adequate type and level of human control. This
should be at the center of any regulation of LAWS.
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No, Not That Verification: Challenges Posed
by Testing, Evaluation, Validation
and Verification of Artificial Intelligence
in Weapon Systems

Maaike Verbruggen

Abstract Over the past decade, research in Artificial Intelligence has advanced
significantly, but many challenges still remain. One underexplored problem is the
fact that it’s extremely difficult to test AI. In fact, there are no techniques in existence
that can validate and verify AI, to ensure that the systems will function as specified
and avoid unpredictable behaviour. Additionally, most military innovation and
procurement protocols are designed with hardware in mind, not software, like
most contemporary AI. To elucidate this problem, this chapter will set out the
challenges related to testing AI, and the implications for arms control.

1 Introduction

When it comes to Artificial Intelligence (AI), it is hard to say which people talk
about more: how much it will revolutionize everything, or how great the hazards are.
The literature contains many discussions of bias, fairness, safety, security, under-
standability, explainability and brittleness—the list goes on and on. Silicon Valley is
known for its unofficial “disrupt and break things” motto, or its tendency to roll out
products first and ask questions later. But defense organizations generally follow a
completely opposite approach, and military products go through extensive cycles of
Testing, Evaluation, Validation and Verification (TEV&V). Particularly important is
the Validation and Verification (V&V) process, which formally proves that a
weapon works properly and will function as specified. In an ideal world this could
serve as a quality check to ensure that the aforementioned problems with AI such as
bias and brittleness would not plague weapon systems too.

Unfortunately, that is not the case. It is not (yet) possible to formally verify and
validate AI due to its non-deterministic nature. Moreover, its integration in weapons
can have unexpected effects at the system level, called emergence. Consequently,
the behavior of a weapon with AI might not be fully predictable. It is not only
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impossible to be certain how AI will function, but we cannot even assess how
(un)certain we are. Because AI responds to its environment, extensive and iterative
operational testing is required to assess how it will function in different scenarios.
However, operational testing is generally conducted long after the design of the
weapon has been determined and the first prototypes have been rolled out, making it
hard to change anything structurally. This does not mean that AI is fundamentally
unreliable or unpredictable, but that we struggle to know AI and be certain of how
(un)reliable and (un)predictable it will be.
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Ironically, if human control over a system is reduced or removed, or if a system is
piloted remotely, it becomes absolutely essential to be 100% sure specifications have
been met, because humans are no longer there as a failsafe. Without such a safety
net, it is necessary not only to verify and validate the properties of the weapon in a
technical sense, also to verify and validate that it will achieve mission requirements.
The conundrum is thus that V&V of AI is both more difficult and more important
than ever before.

This chapter will focus on Research and Development (R&D), TEV&V and
acquisition processes in defense organizations at large, but of course there are
stark differences among countries. The vast majority of the literature is from the
US, which unfortunately means the way TEV&V is presented here is biased. But
even though the literature is US-dominated, the problems with V&V of AI have truly
global proportions. Not only does it pose great risks for accidents in warfare, for
which civilians will pay the price, as they always do. It also leads to political
contestation over what it means to validate, verify and certify autonomous technol-
ogies, as countries black box their AI when exporting weapons. This will make it
very difficult for arms importers to independently validate, verify and certify the
weapons they buy; determine whether these weapons will reflect their national
doctrines concerning the use of AI; or conduct Article 36 reviews to assess their
legality.

This chapter will start with an explanation of the TEV&V process, and why this is
so critical for military technologies. It will then explain the problems with V&V of
AI, and how it does not fit existing TEV&V protocols. Finally, a discussion of
implications for arms control and potential solutions concludes the chapter.

2 TEV&V: The Traditional Way

2.1 Military TVVE

V&V does not come cheap, lengthens the R&D timeframe, and requires specialized
expertise (Gutmann, 2004). Nevertheless, nobody really tests like the military.
Military innovation is often highly ambitious, aiming to develop a future weapon
with yet to be discovered, mature or proven technologies. Development itself can
take up to 30 years, and the weapons are expected to last up to another 50 years.
Weapon design thus involves incorporating technologies you only expect to exist in



15 years, and building a system that will remain functional for decades in a hostile
environment. In addition, the stakes are very high. If a country’s defenses against an
invasion fail, it is done for. If your gun jams on the battlefield, you are dead. Losing
soldiers can have serious political costs, especially in countries with a casualty-
averse culture or ones that glorify the military. Ironically, this intolerance for risks
both heightens the importance of V&V and is one of the drivers towards AI and
unmanned systems.
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2.2 Verification and Validation

Verification procedures test whether a system meets design specifications, while
validation procedures test whether a system meets the requirements of the user. In
simple terms, verification answers the question “Did you build system correctly?”
while validation answers the question “Did you build the correct system?” (Clark,
2015). This is different from arms control style verification, which refers to ensuring
that countries comply with arms control.

The benefit of V&V is the depth and extent of certainty it provides. Normal
program testing cannot be exhaustive, because it can reveal bugs, cannot show their
absence (Dijkstra, 1972). V&V is far from flawless and does not lead to products that
work flawlessly. Instead it ensures design and testing is conducted more holistically
and reduces the chances of mistakes during the R&D process. Moreover, you get
better insight into how your weapon functions. If you know that particular compo-
nents are prone to failure or hard to verify, you can build in mitigation measures for
the problematic parts. If you know the error rate, you can better assess whether a
specific use is justifiable, and you can exclude risky use-cases (Luckcuck et al.,
2019). What follows is a brief explanation of the role of V&V during the R&D
process.

It is essential to first gather the requirements from the users and/or buyers in a
structural manner. A distinction can be made between functional requirements (e.g.,
shooting a rocket beyond the line-of-sight) and non-functional requirements that
describe system properties and constraints (e.g., reliability or safety) (Pereira &
Thomas, 2020). This stage should also involve a legal or Article 36 review, which
is mandatory for states party to the First Additional Protocol of the Geneva Con-
ventions1 (Boulanin & Verbruggen, 2017). These requirements are turned into
specifications, which transform abstract concepts in natural languages into exact
specifications, often in technical language (Wayne, 2019). This includes the type of
metrics to use and the benchmarks that the system should meet. For example, the
user might insist the system should be safe, but “safety” is not something you can

1While the USA has not signed or ratified this protocol, it does mandate legal reviews for all new
weapons.



confirm. It should thus be expressed in a more concrete metric, such as the rate of
misfires, and include a threshold, such as once out of 100 times.
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Because the production of military systems is extremely expensive, it is very
important to be sure the product works before you start manufacturing it in large
quantities. Therefore, during operational TEV&V, the product is tested to explore all
the potential errors and failures both in use and when interacting with the environ-
ment (Keane & Joiner, 2020).

Once the users or buyers are satisfied, the product should undergo another Article
36 review and then become certified. The exact certification protocols differ from
country to country. If the product is sold abroad, the end-user will also need to
conduct TEV&V. If Life Fire TEV&V is unfeasible or too expensive, formal V&V is
critical to assessing whether the product works correctly, and whether it satisfies the
specified needs (Keane & Joiner, 2020).

2.3 Methods

V&V can be conducted using a variety of methods, which can be placed on a
spectrum of correctness. This means that there is no single specific way V&V
must be conducted. The most reliable and correct methods are theorem proving
and model checking. Together they are called formal methods. Formal methods lead
to safer systems and provide a “legal burden of proof regarding due diligence”
(Schaffer & Voas, 2016). They provide proof that the system meets the specifica-
tions, and assess the consistency, completeness and correctness of a system in a
systematic fashion (Gutmann, 2004).

Theorem proving is a highly abstract process in which mathematicians formally
prove that a system will display the properties the model predicts, based on the
external circumstances and the previous states of the system. Model checking
involves running a digital model of the system through all different possible states
to assess whether it exhibits the specified behavior. The goal is to search for
violations of this behavior, in order to remove bugs and ensure the system runs
consistently. Model checking is less “correct” than theorem proving because this
information is not as “total” as mathematical proof, but it is easier to use, and it is
easier to identify the specific bugs causing problems.

Another tool is runtime verification. All events, states and variable updates of the
system are compared with the formal specification that sets out expected behavior. If
there are discrepancies, the machine can take action to correct them, notify the
operator or, in the case of an adaptive system, fall back onto a deterministic and
predefined control system. This is thus very useful for operational TEV&V.
However, it takes extra memory, CPU and bandwidth, which makes its use in
smaller weapon systems such as tactical drones problematic (Bhattacharyya et al.,
2015).

The past three decades have also seen tremendous improvements in modeling and
simulation (M&S) capabilities, spurred by advances in high performance computing



as a replacement for nuclear-weapons testing. M&S makes it possible to experiment
with different weapon designs, conduct early user testing, vary the environments of
operational testing, and expose a system to particularly risky scenarios to see how it
holds up. However, these models must also be verified and validated themselves.
Verifying digital representations of the world is not so easy . . . which brings us back
to the topic of AI.

No, Not That Verification: Challenges Posed by Testing, Evaluation,. . . 179

3 What Is AI?

This paper employs a broad definition of AI, owing to the diversity of the field. Over
its 70 year history, AI has been pursued from many different angles, both diachron-
ically and synchronically. Drawing a line that distinguishes AI, automation and
software is thus hard, and the scope of the various terms has changed repeatedly over
time. Successful applications often become normalized over time and cease to be
considered AI, such as Automatic Target Recognition systems or search functional-
ity. The popularity of Machine Learning (ML) has brought the subject back into the
public spotlight, but the problems with TEV&V of AI are much broader and far
older. However, ML and particularly Deep Learning (DL) have introduced a whole
additional set of issues, as though things were not already complicated enough.

The problems with TEV&V of AI affect a broad range of applications. We can
identify four general but overlapping functions of AI in weapon systems. First is the
function of processing input data. This includes tasks such as object identification,
3D mapping, data filtering and sensor fusion. After being processed, data can be
redirected to other components, other systems or to the operator. Second is the
control function: monitoring the internal and external environment to maintain
stability of the system. This includes self-repair, signaling the need for predictive
maintenance to the warehouse crew, or sense-and-avoid algorithms where the
system responds to the environment. The third function is the task of planning,
which refers to how a set goal should be achieved. For example, if a robot is assigned
to go from A to B, it can plan a route itself. A human-controlled system can include
recommendations on how to take action in order to achieve a preassigned goal. The
fourth function is executive decision-making. There is no strict boundary between
planning and decision-making, because any distinction is based on the level of
specificity of the assigned goals. If a missile is assigned to hit a very specific object,
or specific geographic coordinates or a specific electromagnetic signature, but
autonomously decides on the angle of impact, the exact moment of explosion
(e.g., just before or just after impact, based on the target material), or the flight
path in the case of a moving target, it might make more sense to speak of “planning.”
If the missile is assigned very broad parameters (e.g., enemy tanks in area x), and the
missile selects the exact target, it might make more sense to speak of “decision-
making.”

Obviously, this boundary is extremely blurred, which makes the debates on
Lethal Autonomous Weapon Systems (LAWS) complicated. AI has been used for



both planning (e.g., fire-and-forget missiles) and decision-making (e.g., air defense
systems) in weapons for at least 70 years. But as AI has improved, the range of
freedom within which the system is allowed to operate has widened. The question is
where and how to draw the line. The struggles with TEV&V of AI further complicate
this question. But this does not just apply to LAWS, as it makes all military systems
with AI less knowable and predictable..
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The following section will set out the problems intrinsic to AI, ML/DL and
system integration. It is followed by an explanation of why AI is so difficult to
test, especially with our current protocols. In conclusion, the chapter describes the
implications for arms control.

4 Problems with the Technology

4.1 The Logics of AI

The key problem of TEV&V of AI is that many techniques operate in a
non-deterministic fashion. The exact regulations differ from country to country,
but US laws specify that all safety-critical software in military aviation must be
deterministic and time invariant. This means that the exact same configuration of
input must always lead to the same output and cannot change over time (Lyons et al.,
2017). Obviously, all weapon components will behave differently based on the
environmental conditions. But adaptive systems vary not only in their output
based on the input, but also in the way the input is transformed into output by
utilizing non-deterministic logic. For example, swarm-control algorithms determine
the starting position of the units of a swarm stochastically (randomly), because
otherwise every node would move to the exact same spot. Many AI algorithms are
intrinsically probabilistic in their programming, execution or data sampling, and all
neural networks produce only approximate solutions to the problems they have to
address. ML systems that learn online (after deployment) will function differently
over time, and are thus not time invariant (Braiek & Khomh, 2020).

Because the logic is indeterminate, a system can find itself in one of a near infinite
number of different states. This is called the state space explosion. A state refers to
the values assigned to a program variable, and the state space refers to the set of all
different possible states of a program. Formal methods cannot exhaustively search,
examine and/or test all different states. It is possible to search through subsections of
the state space, but doing so risks missing critical interaction effects between sub-
sections (Haugh et al., 2018). Moreover, it is also not necessarily clear how these
subsections causally relate to each other.

And while all systems respond to the environment, most do not respond so
sensitively to humans as some AI systems do. In fact, one of the most important
environmental factors is the human-machine interaction. Humans and machines
interact with and respond to each other. But humans are highly unpredictable,
which makes it hard to foresee all different ways a machine might respond (Bolton



et al., 2013). This is especially pertinent in manned-unmanned teaming set-ups,
because these rely on a shared understanding between human and machine about
mission goals and methods. But any mathematical model that tries to capture the way
humans reason will inevitably fail, which means that we cannot mathematically
verify how machines would act in all possible scenarios. It is important to realize that
the problems with V&V are not dependent on the level of autonomy of a system. In
fact, systems that have intermediate levels of autonomy and are used in close
interaction with humans are the hardest to validate and verify due to the
unpredictability of the human element (Tate, 2019b).
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4.2 Developing ML

The leading concept of the third AI summer in the 2010s–2020s is a particularly
gnarly type of AI called ML. ML is developed by applying a model with a general
framework and specific computational techniques (such as regression or Bayesian
networks) to a (large) dataset. The model searches for patterns in the structural
features of the data, as opposed to its semantic content. The structural features in the
data that explain a pattern are then reduced to the most essential characteristics and
can then be applied to other data, where the model will find these same patterns. This
constitutes the ML algorithm that you will integrate into your weapon system.

The core problem for V&V is the question whether the pattern of structural
inferences you have found actually also appears in the same way elsewhere. This
is the question of the generalizability of ML, which is extremely critical, but there
are no metrics for measuring it (Mahajan et al., 2020). Thus, ML might detect
patterns where there are none. Paradoxically, an ML algorithm is often also hyper-
deterministic at the micro-level (e.g., which pixels enable classification). That means
that small changes in how the data is structured—that would be irrelevant for human
interpretations—can lead to wildly different conclusions by the machine (Wojton
et al., 2020). Even different ways of formatting data can drastically reduce the
performance of an algorithm. Mahajan et al. (2020) show how a ML algorithm
trained to detect knee ligament tears trained on MRIs from one hospital, dropped
15 percentage points in performance when applied to MRIs from another hospital.
Meanwhile, weapon systems with AI are supposed to function not only in highly
heterogeneous networks of different weapon systems, but in transnational military
operations with weapon systems of different countries. This is what makes it so
critical for weapon systems to be interoperable, and for different data sets to be
preprocessed and calibrated. It makes ML in its current state extremely brittle, as the
chance of failure if it is used in conditions other than the conditions specified is very
high. However, validating and verifying this condition—called robustness—
requires knowing under what condition the algorithm will and will not perform.
This means that not only the algorithm must be validated and verified, but also the
data used to train it. It is necessary to confirm that the data is structurally similar to
and representative of the data encountered in real life (Pereira & Thomas, 2020).



Data that is not representative is called biased. In practice the training data and the
real-world data are almost never identically distributed, which is called the reality
gap (Luckcuck et al., 2019). Even if it would be possible to verify and validate this at
the moment of deployment, many ML algorithms continue to learn online, while in
service. Not only does this mean that the algorithm will continuously change, but we
also cannot validate or verify the extent to which it will change. We also do not know
what sorts of data it might encounter after deployment, and to what extent this will
differ from the training data. This process of continuing to learn and thus moving
away from the requirements is called model drift (Pereira & Thomas, 2020). Model
drift makes the algorithm inherently unpredictable, can lead to decreased perfor-
mance or even catastrophic forgetting, without the operators noticing (Wojton et al.,
2020). While online learning makes the ML less predictable, it can increase its
accuracy. Real-life data could be more representative than the training data, and ML
algorithms become more accurate the more data they train on (Pereira & Thomas,
2020). The predictability that V&V requires must thus be weighed against accuracy,
which is no easy choice.
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Not only are we uncertain about the performance of ML, we are even uncertain
about how uncertain we are. Training ML algorithms always involves setting initial
parameters in the model, and tuning these hyperparameters between training ses-
sions. These parameters demarcate a subset of the model space to search through and
focus on for training (Braiek & Khomh, 2020). These parameters are generally based
on the suggestions from the framework, manual configuration based on experience
or the domain literature, or literal trial and error. But the exact relation between the
(hyper)parameters and the performance of the algorithm is not really understood.
Consequently, traceability is impossible because of the unclear connection between
the algorithm, the model, and the data. Moreover, the standard technique in software
for assessing how extensively you have tested (to compensate for the lack of
completeness if formal methods are not being used) is called coverage testing
(Braiek & Khomh, 2020). Test coverage describes the extent to which the tests
have confirmed all the requirements, and code coverage describes how much of the
code has been run in the conduct of tests, to find those rarely used pieces of code and
assure they also function properly. Code review by bots or preferably by external
people helps remove errors and bugs. All of this is not possible due to the indirect
nature of programming ML algorithms and the near infinite state space that is to be
explored (Varshney & Alemzadeh, 2017). We are thus not only unable to verify that
the weapon matches its specifications but also cannot compensate by formalizing
and streamlining the work process, as is done in, for example, aerospace engineering
through the extensive use of checklists.

The situation is even worse for DL. Most ML models require the programmer to
dictate in advance which features of the data the algorithm should mine in the search
for patterns, an activity called feature engineering (Braiek & Khomh, 2020). This
contrasts with DL, where these features are inferred by the model itself. This makes
it possible to uncover patterns based on logics that are extremely difficult to codify.
The advantage of DL is that you can develop AI for those functions that come
naturally to humans, and are consequently difficult to codify. For example, people



know how to speak, read, or identify faces, but if anyone asked them how they do it
they would be at a loss. Because the point of DL is to develop algorithms for those
capabilities we struggle to program, setting out specifically how the algorithm
should function so that we can validate and verify it would defeat the entire purpose
even if we knew how to do it. And we do not know how to do it, because the DL
algorithm reasons in such an alien way that humans struggle to grasp it. This opacity
is what is often called the “black box” of AI, and it has two aspects: explainability
and interpretability. Explainability describes how well we can understand the way in
which a machine comes to a conclusion. For example, often we do not know which
features a machine uses to classify an object. All we have is a set of weighted
integers in the algorithm which are difficult to grasp for humans. This is particularly
a problem for the user. Interpretability describes how well we understand why the
machine comes to their conclusion. For example, we often do not understand why a
machine is using those features to classify a picture. We struggle to identify the
causal inference between the settings of our training model, the data and the exact
nature of the algorithm this results in (Braiek & Khomh, 2020). Not only must we
grapple with not understanding how the DL reasons, which makes it impossible to
model, validate and verify, but even if the algorithm shows high levels of accuracy
on the training data, we do not know whether the system came to the right conclusion
for the right reasons. For example, it might not fire because it did not detect anything
at all instead of classifying an object as a hospital. But we need to understand why a
system makes a certain decision to verify and validate its generalizability on
anything else (Wojton et al., 2020).
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4.3 Integrating AI

Ideally, all software involving AI would be modeled in an integrated manner in
advance when designing a new complex weapon system. This might be the way
weapons are developed in the future. But for now much of current development
focuses on developing individual computer programs or retrofitting existing systems
to add autonomous capabilities (Reim, 2019). AI is often seen as a component that
can be integrated into a system at a later stage, independent of sensors, processing
power, communication equipment, etc. But these components can affect the com-
putational intelligence of the AI in question. For example, most ML algorithms are
trained using extremely powerful parallel graphic processing units. However, it is
extremely unlikely that the weapon system the algorithm will eventually be inte-
grated into will be a system running on parallel processing of equal power. While
running the algorithm is not as computationally intensive as training the algorithm, it
is still necessary to ensure that the system will have sufficient capability to run
properly, as this might otherwise result in unexpected time lag (Pereira & Thomas,
2020). Another example is the situation where the algorithm analyzes data from
different sensors in the weapon system, but this requires proper calibration (Young,
2016).
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In addition, AI has a penchant for generating emergent properties. There are many
different definitions of emergence, but here we will talk about weak emergence, and
define it as unexpected properties or behavior at the system level. All complex
systems are prone to these weak emergent properties (Johnson, 2006). From a design
perspective, emergence can result from unexpected interactions between compo-
nents or between components and the environment or from a product design that
insufficiently specifies the properties of subsystems and components or interfaces
between them, leading to unexpected combinations. From an organizational per-
spective, emergence is generally the result of subcontracting work on different
components and subsystems. This inhibits gaining holistic understanding of the
system and obstructs synchronization and coordination between different subsystem
and component development processes and actors (Brusoni & Prencipe, 2011).

Emergent behavior has become an increasingly common issue with the introduc-
tion of software into weapon systems (Clark, 2015). This radically increases the
number of possible interactions and linkages that must be validated and verified, and
this more complex interdependence creates many new opportunities for failure
(Hylving & Schultze, 2020). In addition, weapon systems are increasingly coupled
in extensive networks of systems of systems linking the entire battlefield together.
As shown above, AI is generally unpredictable as a component because its behavior
depends on the state of the environment, which cannot be fully known in advance.
Moreover, it links different components, and consequently radically increases the
complexity of the system as a whole. As such, US Army representatives have stated
that identification and evaluation of emergent behavior is more important than
finding defects (Deonandan et al., 2010).

The introduction of software and the rise of complex systems has already created
many difficulties for TVVE that have not been fully solved. And when problems
appear, it can be difficult to isolate their cause. Small changes in the design of the
components can cause significant changes in system behavior, but it is often unclear
exactly which factors caused the changes (Tate, 2019a, b). This can be grasped well
using a sports team as an analogy: You can easily tell whether a team is doing well or
not, but exactly what enables or hinders success is much harder to identify, let alone
correct.2 Most of the time, emergence is an unknown unknown. Theorem proving is
particularly inadequate here—but it cannot check something that was not part of the
design. Model checking is a better option, but it still becomes very difficult to check
all the different states of complex systems at the system level (Bolton et al., 2013).
Consequently, most V&V of complex weapon systems concentrates on formal
verification of a small number of specific data points that have been identified as
most critical, based on the underlying theoretical model. But since we do not know
fully how AI reasons, we do not know which data points are most critical or whether
they are potentially coupled with other data points.

2Except of course that it’s always the fault of the referee.
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5 Problems with the Process

5.1 Testing AI

Most acquisition protocols are designed in a sequential fashion. The exact stages
differ per country and weapon, but generally speaking, acquisition involves separate
phases such as modelling the requirements, designing the overall architecture of the
weapon system, decomposing the design into sub-systems, and continuing this
process on a lower level. Every phase is validated and verified and each subsequent
phase fills in more detail and validates and verifies it again. The problem is that this
protocol has been designed with hardware in mind. It is done to reduce the chance of
errors further down the process, where they get exponentially more expensive—
particularly if they are found in the production phase, as this is the most expensive
phase of R&D. By contrast, software has no production phase, as it does not need to
be manufactured. Obviously, it will still need to be implemented somewhere, but that
is equally true for hardware, and implementation is different from production. As
such, the lifecycle of R&D in software is different than R&D in hardware. However,
most acquisition protocols have been designed with hardware in mind.

The timelines of R&D of AI and traditional weapon systems vary greatly. Major
complex weapon systems can take up to 30 years to develop and are meant to last for
several decades.AI is developed much more rapidly, is expected to be in use for a far
shorter time and its state-of-the-art advances more rapidly. This poses a substantial
problem for defense planning. The exact shape and content of models always evolve
over the course of the R&D trajectory, but the skeletal structures are set in stone,
because of the high investment costs necessary to develop the platform. Systems
currently nearing deployment were not necessarily built with AI in mind. Moreover,
the countries now commencing R&D on a system will have to spell out requirements
for what AI should be capable of in 20 years, which is quite a gamble considering
both the cyclical long-term and fast-paced short-term history of AI. In addition, it
means that the TVVE test designs and benchmarks will be known years in advance.
Implicitly and/or explicitly, developers and AI might use this time to train the
algorithm to pass the test. Stories of so-called “reward hacking” occur throughout
the history of AI, and they are often only uncovered much later (Wojton et al., 2020).

Because it is difficult to even conduct TEV&V on an isolated piece of software
with AI, many problems only become apparent after system integration. However,
this is quite late in the R&D process, after the specifications, product design and
other components have already been developed. This makes it both very costly, and
more difficult to correct errors (Cook & Haverkamp, 2020). Tallant et al. (2006)
estimated in 2006 that 60% of all development costs were spent on control law,
software implementation and tests; and that the rise of intelligent and adaptive
control systems will increase 200% for single-vehicle and 300% for multi-vehicle
control systems. Clark (2015) estimates that 50% of faults are found in the integra-
tion and system-test phase, but these errors are 20 times more expensive to correct
than if they had been detected in the design phase. He also estimates that 70% of



software development costs are for rework and certification. This has three conse-
quences. Not only is it technologically harder to fix these errors but it is rare that
sufficient time and money has been budgeted to do it properly, and the costs of the
project will already be so high that defense organizations will be less likely to return
to the drawing board to fix the problems in a systematic fashion.
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This problem is particularly bad for ML, because the code behind the algorithm is
not at all structured and decomposable. This means that “if you change anything, you
change everything” (Sculley et al., 2015). There are no individual parts of the code to
correct, and you can only investigate the ML algorithm as it exists (Pereira &
Thomas, 2020). If bugs are found, it is much more difficult to trace them back to
the source (Braiek & Khomh, 2020). And if bug fixes are applied, the entire ML
algorithm has to be tested all over again, as a small change can completely alter the
way the ML algorithm functions.

5.2 Measuring AI

Another problem is that we are not really sure how or what to measure. V&V
requires a baseline truth to assess a model’s veracity. For material systems, this is
a mixture of theoretical knowledge and historical data. For example, due to the
standardization of components, it is known that bolt X has an average failure rate of
Y. This is accounted, for and redundancies and resilience is built into the system to
make it more robust. While software packages are common, it is rare that entire
subsections of a program are reused, so there is no historical data to build upon.
Moreover, there is no equivalent theoretical base for AI. In fact, when it comes to
DL, we actually do not understand why it works so well. This gives us no baseline to
compare with. Even at a regulatory level there are no publicly known defense TVVE
frameworks for AI, with protocols, benchmarks or standards (Wojton et al., 2020).

Additionally, a whole new type of characteristic must be validated and verified.
Civilian certification of products is focused on the technical capabilities to ensure
safety, while military certification involves both technical and performance capabil-
ities (Langella, 2013). But the introduction of AI also mandates certifying opera-
tional capabilities in order to see how well a system can execute a mission. And there
is rarely a baseline truth or a “right” way to execute a mission. Consequently, AI
lacks a test oracle to test against to ensure its correctness (Bhattacharyya et al.,
2015).

The ML community is absolutely no help here, because proper metrics for
assessing the functionality of ML are sorely lacking. The performance metrics
most commonly used are accuracy, recall and precision. However, all of these
refer only to how accurate the model is compared with the testing data, and presume
equal distributions among classes. But ML as a discipline rarely even utilizes the
more sophisticated statistical metrics that already exist. Metrics for basic functions
such as generalizability do not exist, nor do we know how to assess human-machine
teaming (Handelman et al., 2019). It is also true that there are no proper benchmarks



for assessing how DL performs based on the hardware-software configuration,
which would be essential for V&V of cyber-physical systems (Mahajan et al.,
2020). This is due to the lack of metrics and that the few good ones are often used
for applications only marginally related to their original purpose (Novikova et al.,
2017). We are not even talking about non-functional requirements here, but just
basic descriptions of how well an algorithm performs. Consequently, it is deeply
questionable whether the tests conducted to measure the performance of AI will be
representative of its performance in real life.
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6 Implications for Arms Control

This leads to consideration of implications for arms control. The problems with
V&V clearly show that the existing military safety culture will not be sufficient to
counter the problems endemic to AI such as safety, security, predictability, control,
transparency, trust, brittleness, reliability, etc. These difficulties have been well-
documented, so they will only be touched upon briefly. Systems could behave in
unexpected ways on the battlefield, especially if they display emergent behavior or
employ offline learning. There are also considerable safety risks, because modern
weapons are of complex, opaque, interactive, tightly coupled systems, making it
hard to identify and put an end to incidents in time. The lack of V&V could decrease
operator trust, which is a known risk factor for accidents (Gao et al., 2013). Systems
could interact with each other, leading to unforeseen consequences. This is espe-
cially risky when it involves systems from opposing parties, as this could lead to
unintended conflict escalation. Moreover, the lack of V&V can hide cyber-
vulnerabilities and we cannot be certain that the system could not, for example,
fall victim to Adversarial AI. Testing would need to take into account the potential
behavior of an intelligent adversary in order to ensure system robustness, which is
very difficult to accomplish (Tate, 2019a, b). Thus, military systems with AI that
cannot be verified and validated pose serious risks for combatants and civilians alike.

This gap in V&V has serious implications for Article 36 reviews. To do legal
reviews properly, countries need full access to the technical data of their systems.
They must know how the algorithm functions to assess its legality. They will also
want to conduct V&V to ensure the system meets the requirements, calibrate trust
levels and check for incompatibilities with national doctrines. But AI is often black
boxed, making it difficult to conduct legal reviews.

This is even more difficult for arms importers. Arms companies have become
very hesitant to share technical data with buyers, even if the countries in question are
close allies, under the guise of Intellectual Property Rights (IPR) protection
(Langella, 2013). This reluctance is especially strong for weapon systems with
AI. French policy makers have also informally expressed their intention to black
box all AI arms exports. They are afraid that the algorithms could be reverse
engineered and provide information about the highly sensitive data the algorithm
was trained on. Importers might assume that exporters will have done legal reviews



for them. However, national doctrine on AI varies. Moreover, only around 20 coun-
tries actually conduct Article 36 reviews. The scope of applicable law also varies
from country to country, as does the legal interpretation of those laws (Boulanin &
Verbruggen, 2017). In addition, Article 36 requires only states to conduct these
reviews for their new weapons, means, and methods of warfare. While systematic
empirical data is non-existent, off-the-record conversations suggest that military
technologies developed by non-states—such as defense companies or the EU—or
derivations of weapons meant for export only, do not always undergo Article
36 reviews. Thus, countries cannot assume that weapons are legal and validated
and properly verified, and so must conduct TEV&V themselves.
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7 The Search for Solutions

Fortunately, defense organizations are aware of these problems and actively
searching for solutions. There are many technical solutions currently under investi-
gation, including automated testing, digital twinning, digital test beds, cyber ranges
and M&S (Flournoy et al., 2020). But because the literature overwhelmingly focuses
on this issue from the point of view of the developer, potential solutions here are
discussed from an arms control point of view.

When procuring an externally developed weapon system, provisions regulating
IPR, life cycle maintenance, technical data access, maintenance, data ownership,
referent data, etc., should be included in all contractual arrangements to avoid
situations where countries are unable to inspect the internal workings of the algo-
rithm. In cases where developers refuse to provide information about the internal
workings of the system, they should provide a package of relevant information on
the specifications, R&D process, data used and all TEV&V results. The extent and
quality of available information should be explicitly incorporated into the Article
36 review, which should involve external civilian lawyers.

External and independent verification, validation and certification of weapon
systems should become mandatory if it is not already so. The exact regulatory
scheme of weapon certification differs from country to country, but it is generally
conducted by the industry that developed the weapon, the higher-ranking military
officers who favored its adoption, and the MoD . Government bodies such as the
FAA, that are supposed to conduct independent certification, are frequently
subjected to “regulatory capture,” as they are starved for resources and rely on
industry to self regulate. The tragedies with the Boeing 737 MAX were the result
(Travis, 2019). Therefore, civilian governmental agencies should receive adequate
funding sufficient for them to maintain independent oversight, without any obliga-
tions to either the MoD, the military, or the defense industry, and without the tunnel
vision that generally accompanies military procurement.
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8 Conclusion

This chapter has highlighted the problems with TEV&V of AI. The key point here is
that despite all the concerns, it is very difficult to know AI, let alone do so with any
level of certainty. Integrating AI into weapon systems increases this uncertainty for
the entire system. Moreover, our existing TEV&V processes are not ideally suited to
correcting these issues. Because of this, we are already seeing political struggles over
the standards for TEV&V of AI. If there are no global or national standards to
validate and verify AI, developers should instead increase the transparency of
algorithms, the development process and the way they have conducted TEV&V of
AI. Unfortunately, we are observing a global shift toward less and not more sharing
of technical data in weapon systems. But without being able to know how AI will
perform, it is doubtful that Article 36 reviews will be sufficient to ensure that no
weapons are employed that cannot comply with international law.
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Applying Export Controls to AI: Current
Coverage and Potential Future Controls

Kolja Brockmann

Abstract Advances in artificial intelligence (AI) are increasingly conflated with
military power and competition has ensued over technological leadership. States are
looking to export controls as an instrument to prevent misuse of AI and govern the
trade in relevant technologies. However, there is a lack of clarity about the extent to
which export control instruments already cover dual-use goods and technologies
used in AI and its military applications. A growing debate is emerging in national
and in multilateral forums about both expanding export controls and about their
limitations in the context of AI. This chapter reviews the role, coverage and
limitations of export controls, explores recent initiatives to expand export controls
and identifies opportunities for export controls to contribute to a comprehensive
governance approach to AI.

1 Introduction

Artificial intelligence (AI) is an umbrella term that was originally coined in the 1950s
and is now commonly used to describe a range of computational techniques that
allow machines to perform tasks and carry out deliberation processes that are usually
associated with human intelligence, including natural language processing, com-
puter vision and learning (Boulanin, 2019, pp. 13ff).1 Advances in AI are bound to
play a significant role in the future development and capability of conventional
weapons, nuclear weapons, advanced delivery systems, cyber tools and surveillance
technologies (Boulanin et al., 2020a, b; Brockmann et al., 2019; Viski et al., 2020).
Advances in AI are increasingly conflated with military power and superiority and a
fierce competition has ensued, particularly between the United States (US) and

1This chapter only considers so-called weak or specialized AI, in contrast to strong AI or what is
commonly referred to as artificial general intelligence (AGI).
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China, but increasingly also involving European Union (EU) member states, Russia
and other states. Concerns about the potential humanitarian and strategic impact of
advances in AI and their adoption by militaries are driving a search for hard and soft
law instruments to prevent misuse of AI and related applications, encourage
restraint, promote transparency and build confidence. The current and future role
of export controls in strengthening the oversight and regulation of the trade in and
use of AI is gaining more and more attention in this wider debate. However, much of
the discussion is characterized by uncertainty about the current and potential future
capabilities of AI technology and the role that export controls can play in reducing its
risks.
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There is a lack of clarity about the extent to which export control instruments
already cover dual-use goods and technologies used in AI and its military applica-
tions. There is also a growing debate both nationally and in multilateral forums about
the possible need for additional export controls and about what form they should
take (Barkin, 2020; Flynn, 2020; Viski et al., 2020). Much of the debate is focused
on the challenges and adverse consequences of potential new controls, including the
difficulty of identifying specific AI technologies that could usefully be covered by
export controls and the potential negative impact of such controls on AI research and
development.

This chapter seeks to improve understanding of the role of export controls in
governing the trade in and use of AI technology and provides a preliminary
assessment of their current and future role. In doing so, it seeks to amplify on
ongoing discussions about the potential need for and risks of adopting new export
control instruments in this area. Section 2 introduces export controls and their role as
a non-proliferation and technology governance tool. It provides an overview of the
existing coverage of AI and its military and dual-use applications by different export
control instruments. Section 3 discusses recent national and multilateral initiatives to
review potential new export controls on AI. Section 4 analyzes the main challenges
and limitations of applying export controls to AI. It also considers specific opportu-
nities that export controls and related compliance measures provide for the gover-
nance of AI. Finally, Sect. 5 briefly summarizes findings and policy
recommendations.

2 Current Export Controls on AI and Related Hardware,
Software and Technology

Export controls are sets of regulations established by states to gain oversight over
and limit trade in certain military and dual-use goods and technologies.2 They
impose licensing requirements—and in some cases prohibitions—on transfers of

2Contrary to the common understanding of technology as “machinery and equipment developed
from the application of scientific knowledge” (Concise Oxford English Dictionary, 2022), in export



controlled goods and technologies. Export controls establish rules for when export
licensing applications may be granted or denied by a state, on what basis and
according to which standards and criteria these decisions should be taken. The
implementation of export controls is reliant on control lists that define those goods
and technologies to which licensing requirements apply, and guidelines based on
which end uses and end users should be restricted. The control lists and guidelines
adopted by most states implementing export controls have been created and are
maintained by multilateral export control regimes. The four main regimes are the
Australia Group (covering chemical and biological weapons), the Missile Technol-
ogy Control Regime, the Nuclear Suppliers Group (NSG) and the Wassenaar
Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and
Technologies (WA). They are informal groups of supplier states that seek to
harmonize their export controls through politically binding guidelines to prevent
destabilizing accumulations of conventional weapons and the proliferation of chem-
ical, biological and nuclear (CBN) weapons and their delivery systems. Despite the
regimes’ exclusive membership and thus limited participation in their deliberation
and decision making, their control lists and guidelines have been adopted or adapted
by many states outside their membership (Brockmann, 2019). Notably, some major
exporters remain outside some of the regimes. For example, China only participates
in the NSG, and Israel does not participate in any of the regimes, although both are
major exporters of unmanned aerial vehicles and many other military and dual-use
goods and technologies.
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TheWA is the most relevant export control regime in the context of AI because of
its coverage of conventional arms and dual-use goods and technologies. The guide-
lines and control lists of the WA (Wassenaar Arrangement, 2019) are the basis for
most national export control regulations in this area, including in the EU and the
US. The EU dual-use regulation—which is directly applicable in EU member
states—combines the control lists of the four multilateral export control regimes in
one list (Council of the European Union, 2021). The EU military list is also based on
the WA munitions list (Council of the European Union, 2019). The US export
control system implements the WA guidelines and control list, but some of its
regulations go beyond them, particularly through the extraterritorial application of
US re-export controls and the application of controls on so-called deemed exports
and re-exports.3

Export control regulations—but also the related trade facilitation mechanisms—
impose certain levels of due-diligence requirements on exporting companies or
research institutes. Thus, export control compliance is not only a requirement for
exporting companies but also for researchers, scientists and academics—among

control regulations technology is usually defined as “specific information necessary for the ‘devel-
opment,’ ‘production’ or ‘use’” of an export-controlled item (Wassenaar Arrangement, 2019,
p. 234).
3A deemed export is the release of controlled technology or software in the US to a national of
another country. A deemed re-export is the release of controlled technology or software “in one
foreign country to a national of another foreign country” (US Department of Commerce, 2020).



others—who share and transfer knowledge, data and technology that could be used
to develop, produce or use controlled items to foreign nationals or to persons or
entities abroad. Procedures for ensuring compliance, due diligence, ethical research
practices and awareness among researchers, scientists, engineers and commercial
companies are therefore often components of, or complement, effective export
control governance frameworks. Other complementary measures include foreign
direct investment controls, visa screening, targeted sanctions, embargoes, diplo-
macy, and other policy tools that seek to influence individuals’ and states’ behavior.
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2.1 Key Types of Export Controls on AI

There is currently a range of both list-based and end-use/r-based export controls that
already apply to certain AI hardware, software, technology and their specific appli-
cations. Some of these controls are incidental and overlapping controls that result
from controls that were introduced in another context in the past, but are still relevant
for contemporary AI development, production and use. In addition, the way that
export controls on software and technology are commonly designed means that
they—in many cases—already cover AI software and technology that is specially
designed or modified for use in military systems or for end uses in CBN weapons or
their delivery systems. However, much of the research and development in the area
of AI will continue to be multi-purpose, widely published in open-source literature,
frequently shared among AI researchers worldwide, and not specific to these
end-uses (OpenAI, 2019; Stanley-Lockman, 2019). As a result, it will be difficult
to govern advances and access to these more general AI technologies using export
controls. The main types of export controls relevant to the control of AI are
hardware, software, technology and catch-all controls.

2.1.1 Hardware Controls

The WA’s dual-use control list—largely adopted by the EU and the US—includes
several specific list items covering AI-related hardware, including neural network
integrated circuits, neural computers, a range of different sensors, several types of
computer chips and some production equipment for semi-conductors.4 However,
none of these represent what is commonly referred to as technological choke points
without which the development or acquisition of specific AI capabilities by a third
country would be seriously impeded or prevented. Identifying, defining and control-
ling specific items that are indispensable for the technology but not widely available
are key if access to specific technologies is to be denied by applying export controls.

4For example, see items controlled under 3.A.1.a.9., 4.A.4.b. and Category 6 on the WA
control list.



Some relevant items are listed—for example “neural computers”—but they fail to
impose meaningful controls (Thomsen, 2018, pp. 16 f.). The formulation of some of
these list items no longer reflects the terminology and state of the art of the
technology or their technical parameters do not correspond to current developments.
Other AI-specific hardware, such as chips that are specifically designed to enable
higher computing power in the training of AI models, or specific manufacturing
equipment for their production, is currently not covered by any specific list item on
the multilateral or any national control lists (Flynn, 2020, p. 8).
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2.1.2 Software Controls

Export controls apply to the transfer and making-available of a wide range of
software. Dual-use control lists do not usually list software in a separate category
but, instead, several control list items include controls on software which is “spe-
cially designed or modified” for the “development, production or use” of the
controlled item.5 While most software controls are thus linked to a specific con-
trolled item, there is also some dual-use software that is controlled in and of itself.
Software that is generally available to the public through retail without restrictions or
is “in the public domain” (Wassenaar Arrangement, 2019, p. 3) is exempt from
controls. Much of the basic AI software that is already widely shared and published
open access is thus exempt. The WA’s munitions lists (ML), which cover military
goods and technologies, include a separate category—ML21—for controlled soft-
ware. ML21 covers software “designed or modified” either for the “development,
production and maintenance” of equipment and software specified on the munitions
list, or for the “development or production” of any material covered by the munitions
list (Wassenaar Arrangement, 2019, p. 212). Trained models and specific AI sys-
tems—particularly those that can be used for the decision and action steps in specific
AI applications—are usually highly application-specific and their end use, and thus
whether they are subject to licensing requirements, is much easier to discern. For
example, AI software that has been developed or modified for use in automated
close-in weapons systems or air defense systems would require an export authori-
zation. The US is currently the only state that has introduced unilateral export
controls on specific AI software. In January 2020, the US Department of Commerce
added a control list item covering “Geospatial imagery “software” “specially
designed” for training a Deep Convolutional Neural Network to automate the
analysis of geospatial imagery and point clouds” to the Commerce Control List
ECCN 0Y521 series (US Department of Commerce, Bureau of Industry and Secu-
rity, 2020a)—a special category for temporary controls on items not previously

5On the dual-use control list of the Wassenaar Arrangement, each control list category has a
“Subcategory D” specifying those listed items for which software as defined is controlled.



listed, particularly emerging technologies (US Department of Commerce, Bureau of
Industry and Security, 2020b).6
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2.1.3 Technology Controls

As defined by the multilateral export control regimes and adopted in EU and US
export control regulations, technology describes “specific information necessary for
the ‘development,’ ‘production’ or ‘use’ of a product” (Wassenaar Arrangement,
2019, p. 234).7 It can take the form of technical data and technical assistance. The
WA’s dual-use control list specifies that technical data can be “blueprints, plans,
diagrams, models, formulae, tables, engineering designs and specifications, manuals
and instructions” (Wassenaar Arrangement, 2019, p. 234). It defines technical
assistance as activities such as “instruction, skills training, working knowledge,
consulting services,” including when these “involve transfer of ‘technical data’”
(Wassenaar Arrangement, 2019, p. 234). In a manner similar to controls on military
software, controls on technology have their own control list category on the WA’s
munitions list—ML22. These controls largely follow the General Technology Note
of the dual-use list, but also extend to specific technology for production installations
(Wassenaar Arrangement, 2019, see ML 22.b.1). Technology controls extend to
transfers or making available of datasets used to train a specific AI system that is
specially designed for a listed military item or if the information contained in the
dataset constitutes technical data as defined above. However, making this distinction
is inherently difficult, particularly for AI systems and datasets that are for general
purposes and less application-specific. Moreover, export controls on technology also
include exemptions for transfers of items that constitute basic scientific research or
information in the public domain (Wassenaar Arrangement, 2019, p. 3). Such
exemptions would probably apply in the case of much basic AI technology.

2.1.4 Catch-All Controls

Catch-all controls are a common export control instrument that enables states to
apply controls on transfers of non-listed dual-use goods and technologies if available
information suggests that they are destined for a restricted end use or end user. The
application of catch-all controls has been discussed extensively in the context of
emerging technologies, including AI (Viski et al., 2020, pp. 40, 52). Catch-all
controls can be a useful tool to enable states to balance security-driven needs for

6For a more detailed discussion of the use of the ECCN 0Y521 series to control emerging
technologies see Brockmann (2018, pp. 20–22).
7The term development relates to “all stages prior to serial production”; “production” refers to “all
production stages”; and “use” refers to “operation,” “installation” and “maintenance” of an item
(Wassenaar Arrangement, 2019, pp. 219, 228, 235).



more control with economically-driven free trade and competitiveness imperatives.
They enable a state to impose controls without introducing broad, list-based controls
that would increase the burden on exporters and licensing authorities to apply for and
process more licensing applications (Brockmann & Kelley, 2018, pp. 25–26; Brom-
ley & Bauer, 2016, p. 7). However, national authorities are often dependent on
access to intelligence information and the due-diligence procedures of companies to
identify cases in which they can apply catch-all controls. Extensively relying on
catch-all controls can create uncertainty about whether controls apply, especially
when compared with controls based on list items with specific technical parameters
(Bromley & Bauer, 2016, p. 7). The participating states in the WA, including the US
and the EU member states, agreed to also establish catch-all provisions on transfers
of non-listed dual-use items with military end uses. However, these controls are
limited to transfers to “destinations subject to a binding United Nations Security
Council arms embargo” (Wassenaar Arrangement, 2003, p. 1) and relevant regional
arms embargoes that are binding or adhered to by the exporting state (Wassenaar
Arrangement, 2003; Bromley & Maletta, 2018, pp. 17–18).8 The participating states
reserved the right to adopt national measures to restrict exports for other reasons of
public policy, enabling some variation in specific national catch-all controls on dual-
use items with military end uses.
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3 National and Multilateral Approaches to Expanding
Export Controls on AI

Several national and multilateral review processes have recently been initiated to
assess and develop recommendations for expanding export controls and related
strategic trade management tools on emerging technologies, including AI. The
three most significant initiatives and processes have been initiated by the US, the
WA and the EU and illustrate the considerations taken into account in this area.

3.1 US Emerging Technologies Review Process

In 2018, the United States initiated a public consultation process to identify “specific
emerging technologies that are essential to the national security of the United States”
(US Department of Commerce, Bureau of Industry and Security, 2018, p. 2). Major
US and multinational companies cautioned that the technology areas identified in the

8The Wassenaar Arrangement agreed in 2003 that catch-all controls should apply to transfers to
“destinations subject to a binding United Nations Security Council arms embargo, any relevant
regional arms embargo either binding on a Participating State or to which a Participating State has
voluntarily consented to adhere” (Wassenaar Arrangement, 2003, p. 1).



AI and machine learning category are long-established and pointed out that many
“have been subject to dual-use export controls for over 20 years” (IBM, 2019, p. 7).
They further cautioned against a potential negative impact of restrictive controls on
the economy and security, loss of technology leadership, access to talent, and
diminished access to the best technology by both industry and the military
(TradeSecure, 2019).
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In parallel to the public consultation, the US government has been engaged in an
interagency review process to explore potential controls on AI-relevant hardware,
software and technology. In terms of hardware that could potentially be controlled,
many options that could be defined by technical parameters have been considered,
but no agreement has been reached on introducing controls on specific ones yet.9 For
example, controls on chips designed to accelerate the computing required in AI
systems are being considered and have been suggested by a number of analysts.
These chips could be clearly defined using technical parameters and restricting
access to them could have a significant non-proliferation effect concerning advanced
AI capabilities by making their acquisition and deployment more difficult (Kania,
2017; Stanley-Lockman, 2019).

3.2 EU Emerging Technologies Review and Dual-Use
Regulation Recast

In 2019 and 2020, the European Commission held a series of Technical Workshops
on Emerging Technologies, bringing together the European Commission and all
interested EU member states for discussions among government technical experts on
a number of emerging technologies. Several such workshops took place between
November 2019 and December 2020, including some in a virtual format due to the
COVID-19 pandemic (European Commission, 2021). One of the workshops
discussed the topic of AI, but it did not result in any immediate initiatives to propose
new AI-related controls in the regimes.10

The EU has been engaged in a process of reviewing and recasting the EU
Dual-Use Regulation since 2011 (Bromley & Maletta, 2019). One of the changes
considered was the introduction of an EU-autonomous list—meaning a control list
independent of the multilateral export control regimes—through which the EU could
introduce controls binding on all member states, for example on emerging technol-
ogies. However, the recast regulation that entered into force in September 2021
instead created transmissible controls through which one EUmember state can apply

9The author participated in a dialogue meeting on AI and strategic trade controls in March 2020
with participants from the relevant departments of the US government and conducted background
interviews with senior officials from the US Department of Commerce.
10Interviews conducted by the author with national licencing officials involved in the review
process.



catch-all controls to exports of non-listed items for which a national control list entry
has been created by another member state (Bromley & Brockmann, 2021). This
compromise reflects the EU’s continued position that controls should be agreed in
the regimes but acknowledges that for some emerging technologies timely unilateral
controls by member states may be required.
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3.3 Wassenaar Arrangement Discussions on Export Control
on AI

In 2017, the WA’s Head of Secretariat said that “Looking ahead, the WA Lists
review process can be expected to continue to address new technologies of security
concern, including [. . .] artificial intelligence and the integration of advanced sensors
and navigation equipment to increase autonomy of weapons systems” (Griffiths,
2017, p. 3). By the end of 2021, no new AI-related control list items or amendments
to existing controls had been agreed upon and published by the participating states.

4 Challenges and Opportunities of Applying Export
Controls to AI

The wider policy debate and the ongoing review processes on the potential expan-
sion of export controls on AI have revealed a range of challenges to and adverse
consequences of applying export controls to AI. They have however also identified
some areas where the application of export controls promises benefits and presents
opportunities for strengthening governance approaches to protect international peace
and security while fostering responsible development and innovation in AI research
and industry.

4.1 Challenges and Adverse Consequences

4.1.1 Implementation Challenges

Several inherent, mainly technical limitations affect the effective application and
sustainability of export controls on AI. There is a lack of technological choke points
that would allow key AI technologies to be identified and defined, without which the
development of sensitive AI-enabled systems would be impossible or at least
considerably impeded (Thomsen, 2018, pp. 15 f.). In addition, the speed of devel-
opment of AI technology and technical parameters and performance levels of AI
systems makes it difficult to identify and adjust control list items quickly
enough, particularly through consensus decisions in the multilateral regimes



(Brockmann, 2018). The established practices of the AI research community,
including the sharing of algorithms, data, models and research findings more
broadly—as is the case for many dynamic fields of dual-use research, including
the life sciences and cybersecurity (Shaw, 2016; Bromley, 2017; Hinck, 2018)—are
difficult to balance with the increasing pressure to impose regulations and gover-
nance tools, including export controls. One serious difficulty here is that the specific
systems that are of concern are often not clearly identified, whether because their
development is proprietary, they are yet to be developed and refined, or because
issues over what by definition constitutes specific AI systems of concern have not
been sufficiently addressed. To date, the different review processes have not been
able to identify technical parameters for specific AI applications that would other-
wise not be covered, but should be, and sufficiently distinguish them from other
civilian applications.
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The implementation of existing controls on intangible transfers of technology
(ITT) and non-list-based controls, such as catch-all controls, also poses a number of
challenges (Stewart, 2016). In the case of AI, there is strong reliance on ITT, either
through electronic transfers of software and technology or through the transfer of
intangible and often tacit knowledge in the form of teaching, international cooper-
ation or work with foreign nationals. Export controls on software and technology are
criticized by some from the policy analyst community as outdated for reasons
including their not being physical goods crossing borders that could be inspected
and stopped (Leung et al., 2019). However, the digitization of information and the
implementation challenges of controls on ITT and software have been topics
discussed in the multilateral regimes for over a decade and states have increasingly
taken steps to adjust and improve controls (Brockmann, 2019, p. 14). Detection and
enforcement of controls on ITT stand out as areas where notable difficulties persist
(Bauer & Bromley, 2019). It is often a difficult process to establish what is subject to
control and what is not, because there is a lack of clarity on what is required and
constitutes production, development, and use. However, the same problems apply to
tangible dual-use goods. While the enforcement of ITT controls continues to be
challenging, steps have been taken by some states to strengthen enforcement,
including the implementation of specialized audit procedures using digital forensics
techniques to verify digital record keeping requirements and trace sharing and
transfers of controlled data or other information (Bauer & Bromley, 2019). As ITT
remains an area of export controls that is particularly reliant on cooperation from
exporters, efforts are underway in many states to raise awareness and strengthen
compliance and self-regulatory practices in academia, research institutes and
research and development departments of companies.

Controls based on end use and end users depend on the information and intelli-
gence available to companies, universities, research institutes and states. Thus, to a
significant extent they are a function of the intelligence gathering abilities and access
of states, as well as the quality of due-diligence procedures and awareness among
exporters. In both areas there are significant disparities among states and in different
sectors of industry and research, many of which are either using AI or are involved in
relevant supply chains (Bauer et al., 2017). Outreach and awareness-raising pro-
grams and harmonization and exchange of good practices in the implementation of



non-list-based controls with regard to the field of AI are therefore advisable. Catch-
all controls may offer an interim possibility for states to apply controls, particularly
in the case of WMD end uses, but their individual application and the uncertainty
that their application creates for research and industry make them less suitable in the
longer run.
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Another challenge to the effective implementation of export controls on AI is the
implementation of due-diligence procedures and carrying out technology classifica-
tions by companies, research institutes and universities. This is particularly the case
if the technology or product developed is still somewhat removed from the final
product and end use. Traditional export control measures should thus be
complemented by dedicated awareness raising and engagement programs through-
out the supply chains that can, for example, contribute to the development of
autonomous weapon systems (AWS), facial recognition systems and other AI
applications that could be misused for repression and other human rights or inter-
national humanitarian law (IHL) violations. Many large companies have shown they
are aware of and are even struggling internally with their employees over the role
they are taking in the development of AI technologies and their applications (IBM,
2020; Rasser et al., 2019, pp. 21ff.). Many smaller companies in relevant supply
chains may be more susceptible to incentives offered by critical end users or lack the
compliance structures to prevent inadvertent transfers of technology.

4.1.2 Potential Adverse Consequences

Companies and researchers, particularly those from Silicon Valley in the US, have
extensively warned of potential adverse consequences of expanding export controls
on AI (Metz, 2019). One particular concern pertains to a potential reduction of
international cooperation in AI development as a result of stricter export controls. If
such stricter policies were to extend to more restrictive visa screening and controls
on deemed exports, they could also have a significant impact on access to and
retention of AI talent (Leung et al., 2019). Companies such as Google have argued
that “expansive controls on AI technology” could affect a significant number of their
engineers and that even if licenses were to be commonly granted, the perception of a
constrained innovation environment would affect their ability to retain talent and
consequently slow the rate of new product development (Google, 2019, pp. 8 f.).

While many concerns have centered around economic impact and competitive-
ness, a more restrictive and nationalized environment for AI development could also
reduce states’ willingness to be transparent and share information about their
domestic AI development and adoption in military and security applications. This
could be particularly relevant in light of the competition dynamics that are already
playing out today in the civilian realm and may spill over in the military realm as
capabilities and usability of AI systems increase. Finally, this could mean that the
development of AI-enabled military technologies might be affected, including less
willingness on the part of AI companies and researchers to participate in defense
product development to avoid being affected by restrictive export controls.



Particularly those states pursuing ambitious strategies for the development of mili-
tary AI are sensitive to such effects and are likely to take them into consideration
when developing export controls in the area of AI. States in favor of limits on
military AI development, on the other hand, may see this as a positive effect that
encourages responsible practices and the exercise of restraint on the part of AI
researchers and industry.
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4.1.3 Conflicting Aims of Export Controls on AI

A complicating issue concerns the different aims pursued by export controls on
AI. The most straightforward aim is preventing the proliferation of AI technology
and its application in, or linked to, CBN weapons and their delivery systems.
However, in the area of conventional weapons systems, where post-Cold War export
controls have aimed at strengthening transparency and restraint to prevent
destabilizing accumulations of weapons (Wassenaar Arrangement, 2011), using
export controls in the context of AI is more complicated. For example, with regard
to autonomy in weapons systems there is currently no ban, specific regulation of
capabilities, or required degree of human control in place. Weapons systems must
nonetheless comply with and be used in compliance with IHL.11 There are existing
requirements to address human rights and IHL concerns in national export controls,
including through the EU Common Position on Arms Exports and the guidelines of
the WA. Operationalizing these requirements (as well as other considerations
emerging from the ongoing debate on lethal autonomous weapons systems) for
export control risk assessment procedures and licensing decision-making may nev-
ertheless be difficult. This is particularly challenging in an environment that is
strongly marked by competition between the US, China, Russia and other states
while at the same time technological advances in AI are conflated with economic and
military advantage and power (Barkin, 2020). Notably, a considerable portion of the
literature focuses on preserving national technology leadership in AI (e.g., Rasser
et al., 2019). This reflects some of the difficulty that is created when seeking to use
one instrument to achieve both the multilateral aims of preventing threats to inter-
national peace and security, human rights and IHL and the national pursuit of
economic and technological advantage, including military-technological superiority,
as part of broadly defined national security objectives.

There is no agreed definition on what constitutes misuse of AI research and
development or on which transfers at the different stages in an AI system’s devel-
opment and life cycle pose risks to international peace and security. Even for the
integration of autonomy in weapons systems these risks have not been specifically
codified to date and states rely on the interpretation of human rights and IHL

11Article 36 of the 1977 Additional Protocol to the 1949 Geneva Conventions creates an obligation
on states to implement reviews of new weapons systems to ensure their use would not be prohibited
by international law (Boulanin & Verbruggen, 2017).



provisions in national risk-assessment procedures as part of decision-making about
licensing (iPRAW, 2020, p. 2). An international legal reference that could poten-
tially emerge from the conclusion of an international arms control agreement
governing autonomy in weapons systems could enable more coherent and harmo-
nized use of export controls in this context. The absence—to date—of such a treaty
or specific normative system limits the ability to discriminate appropriately and
apply a harmonized standard in export controls with respect to autonomy in weapons
systems. Beyond the specific risks related to autonomy, the wider military use of AI,
including in battle-management and decision-support systems, poses a host of other
risks that would also need to be part of risk assessments in research and development
and in export licensing. In practice, there should be a strong presumption of denial of
transfers of AI-related goods and technologies with an end use in fully autonomous
weapons systems as well as in repression and other human rights violations. Simi-
larly, states should deny license applications where the receiving state is unable to
demonstrate that it will maintain appropriate levels of human control in the operation
of autonomy in weapons systems.
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4.2 Opportunities and Benefits

Imposing export licensing requirements, while ensuring as much legal clarity and
predictability as possible, can allow states to increase the oversight over and
awareness of transfers of AI hardware, software and technology, even if no
license-denials are being issued. This increases the oversight of what companies
are developing and marketing as well as who they are supplying and where those
being supplied are located. Most importantly, it allows states to more readily limit
transfers of sensitive AI-related products. While export controls undoubtedly intro-
duce some adverse effects in a highly competitive field such as AI, they nevertheless
provide for a system that contributes to ensuring peaceful uses of transfers of
sensitive items through licensing and transparency, rather than pursuing a strategy
of technology denial (Evans, 2014, pp. 4 f.). States adopting unilateral export
controls would face many of the adverse consequences outlined above, particularly
those related to the competitiveness of domestic industry and research. The adverse
consequences of stricter export controls on the global AI industry would be partic-
ularly significant if such controls were applied by the US, because of the extrater-
ritorial reach of US controls and deemed export controls. In contrast, multilateral
controls, for example through the WA, are much more likely to maintain a level
playing field in terms of economic competitiveness, as they set common standards,
including beyond their membership. Thus, where possible, states should seek to
establish new controls on AI through multilateral frameworks.

Some analysts have argued that claims of AI democratization—asserting that AI
technology has become so ubiquitous and easy to access that imposing barriers at
this point would be futile—are exaggerated, particularly in the realm of military
applications of AI, as many militaries will not be able “to build up the talent,



computing power and data, and organizational capacity required to sufficiently scale
up their usage of AI to produce appreciable effects” (Stanley-Lockman, 2019). As
noted by many government officials, the existing export control architecture already
offers considerable coverage of military end uses and extensive coverage of all CBN
weapons and delivery systems-related transfers. In addition, some hardware that is
particularly relevant in identifiably military applications and sufficiently distin-
guished by technical parameters could also be effectively controlled, for example,
hardened and specially designed electronics components and assemblies, as well as
specific sensors.
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While list-based AI hardware controls and mainly end-use dependent software
and technology controls will not be enough to control the proliferation of sensitive
applications of AI and govern its development, production and use, they still provide
a valuable governance tool. This is particularly the case if they are applied in a
comprehensive approach in combination with outreach to researchers and industry,
raising awareness with developers, establishment of standards for responsible inno-
vation and ethical research, and other upstream compliance and self-governance
mechanisms (Boulanin et al., 2020a). The result could at least be a basic level of
control over the proliferation of, increased information on, and oversight over the
trade in sensitive AI-related goods and technologies, and increased transparency,
particularly among like-minded states, and could also create more widely-adopted
standards and norms.

5 Conclusion

Export controls can play a significant role in the oversight and regulation of the trade
in and use of AI. Despite only a small number of specific control list items covering
multi-purpose AI hardware, software and technology, current export controls
already cover a significant range of transfers with military and CBN weapons end
uses. Review processes to potentially expand export controls on AI and strengthen
related governance and compliance tools are ongoing in the US, the WA and the
EU. Blanket controls on AI-related goods and technologies would negatively affect
scientific and technological development and prevent reaping the likely benefits of
further advances in AI and should thus be avoided. National governments—partic-
ularly through multilateral export control regimes coordinated among EU member
states and allies—should continue their review processes to identify specific
AI-related items that could be covered by limited and straightforward controls and
seek to clarify and deconflict the aims pursued by export controls on AI as far as
possible. At the same time, states should continue to strengthen complementary
standards for compliance programs, awareness raising, responsible innovation,
ethical research and self-governance. Export controls and related compliance mea-
sures are only one component in the larger governance framework that is required to
limit the potential negative impact of AI on international peace and security, human
rights and IHL. Coordination and exchange with a wide range of stakeholders,



particularly on other governance approaches, including traditional arms control and
responsible research and innovation, will therefore be key in achieving progress
going forward.
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Arms Control for Artificial Intelligence

Thomas Reinhold

Abstract With military weapon systems getting more and more improved by
artificial intelligence and states competing about the leading role in this develop-
ment, the question arises how arms control measures can be applied to decrease this
equipment spiral. The ongoing debates on cyber weapons have already highlighted
the problems with controlling or limiting digital technologies, not to mention the
dual use problems. While still in an early stage, this chapter develops possible
approaches for AI arms control by considering the different life cycle steps of a
typical AI enabled system, based on lessons learned from other arms control
approaches. It will discuss the different starting points, their arms control potential
as well as its limitations to provide a holistic perspective for necessary further
develops and debates.

1 Introduction: Or why Hard Arms Control for Artificial
Intelligence Should Be Considered

In this book, we look at both the possibility of using artificial intelligence (AI) to
foster arms control as well as the dark side—the acceleration of warfare or the
possible transfer of decision-making from humans to machines. While AI can foster
arms control (see the overview by Schörnig in addition to the individual chapters) at
the same time it needs to be controlled. In the debates on cyber arms control and
autonomous weapons control, confidence-building measures (CBMs) and increased
transparency are often seen as the best outcomes. In some circumstances, as in the
case of autonomous weapons, only political declarations remain realistic, but their
meaning is unclear until they are actually applied. In short: The arguments why hard,
verifiable arms control is not possible are varied and compelling, and they dominate
the current discourse.
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In this text, however, it will be argued that, at least from a theoretical perspective,
there are definitely starting points for quantifiable and verifiable arms control
measures in the realm of AI and their realization only needs to be consistently
tracked and checked. These approaches are very technology-specific, and it is
necessary to unpack the concept of AI to start with. Only when AI is broken down
into smaller, manageable and technically relevant parts can promising approaches be
identified. This makes it necessary to define AI to begin with.

As many chapters in this book have shown, AI is a well-established concept and
includes deterministic variants such as expert systems. The current debates among IT
specialists, however, focus on so-called neural networks and their recent spin-off
variant deep learning (see the introductory chapter in this book for details; see also
Charniak, 2019; Kersting, 2018). Most civilian applications use this latest form of
AI, and it is also widely used in the military realm. Consequently, the structural
approach adopted here focuses on neural networks but can be applied analogously to
many other forms and variants of AI. To provide a broader perspective and avoid
restricting the discussion to a specific technological branch, in the following text, the
term artificial intelligence will be used, including neural networks and earlier,
current or even future forms of machine learning (ML).

As will be seen, the development process or life cycle of AI based on ML can be
broken down into four components with different but always promising approaches
being applied to each individual component.

It goes without saying that this text breaks new ground and, also due to its brevity,
only formulates initial thoughts. As a result, no silver bullet can be expected, but
ideally a crystallization or starting point at which further discussion can begin. This
text does not aim at ending the debate but rather at (re)opening it by introducing
technical details in order to overcome the common it won’t work because it’s
complicated perspective.

To prove that there are more options for applying arms control measures to AI,
the text will present arguments as follows: Section 2 will provide a brief overview of
current technological trends and the rise of AI and show why it fosters militarization.
Section 3 will briefly examine best practices and established arms control instru-
ments in order to describe the variety of options arms controllers can choose from
under varying circumstances. After that, Sect. 4 unpacks the development process of
AI and identifies the four key components where arms control measures could start.
Section 5 delves deeper into this and identifies the best arms control practices for
each of the components. Section 6 addresses the problematic field of verification and
how the arms control measures suggested in Sect. 5 could be successfully verified.
Section 7 debates potential pitfalls and necessary pre-conditions when such ideas
and concepts are applied to real-life AI-enabled weapon systems. Section 8 goes
back a step and asks whether CBMs could be a viable alternative to the hard and
verifiable measures previously suggested. It concludes that some confidence-
building could be done, but also argues that confidence-building alone would not
be enough given these options. Finally, Sect. 9 summarizes the text and offers a
glimpse into the future.
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2 The Rise of Artificial Intelligence and Its Militarization

The technology of ML and more generally AI has taken huge steps in recent years,
supported by the miniaturization and performance enhancements of IT. Some use
cases that traditionally had been a core application area of AI such as visual pattern
recognition have been integrated in broadly distributed consumer electronics in the
form of facial recognition, image classification or natural speech analysis and its
synthesis (see, for example, the text by Schörnig, 2022). Whereas former AI
applications usually focused on one specific task and its optimization, the signifi-
cantly increased amount of processable data has fostered the development of AI
systems that become an integral part of complex applications. Such AI systems
process, filter and classify huge amounts of data—partly in real time—and are
intended to reduce the data overload of many real-world scenarios for human
operators—for example high-frequency trading (Briola et al., 2021), social media
hate speech detection (Putri et al., 2020) or automated cybersecurity systems (Belani,
2021). And finally, AI is a core element of the ongoing trend toward autonomous
systems that are able to navigate under dynamic, partly uncertain or even unknown
environmental conditions (see the text by Dahlmann, 2022). These developments
highlight a trend in which the role of integrated AI systems is shifting from being one
of many subsystems that deliver input or perform dedicated tasks to becoming the
core element that integrates all the different subsystems and generates the final
output.

These advances are also affecting military trends, applications and strategic
decisions as AI seems to provide the core tool for managing the digitalization of
military systems and the necessity to process huge amounts of data into machine- or
human-usable information (see the texts by Sauer, 2022; Fischer, 2022). Previous
chapters analyzed many of these aspects and discussed the problems and challenges
that arise from the application of AI for different military technologies such as the
automation of cyber defensive and offensive measures (see the text by Reinhold &
Reuter, 2022), robotics and autonomous military vehicles (see the text by Dahlmann,
2022), or even the enhancement and automation of nuclear defense systems (see the
texts by Heise, 2022; Baldus, 2022). In addition to direct integration into weapons or
weapon control systems, ML algorithms are also being inserted into other military
applications such as battlefield management, logistics, recruitment and training of
personnel, or other aspects of the complex military administration and bureaucracy
(Bundeswehr, 2019).

This development is offering new challenges for the regulation, containment, and
non-proliferation of AI as a military technology as well as of AI-enabled military
(weapon) systems. As the debates over the militarization of cyberspace have already
shown, many established measures of arms control and verification are not applica-
ble to digital technologies because of their specific technical features and thus
require new methods (Reinhold & Reuter, 2019a). Whereas political measures
such as confidence-building, codes of conduct, or norms debates are already taking
place (Paoli et al., 2020), technical approaches that would allow verifiable measures



have not yet been studied. Nevertheless, as Lawrence Lessig once stated: “code is
law” (1999), pointing out that software and its underlying code directly reflects the
rules and values of its creators who set its capabilities and limits. As any AI is based
on code, this is certainly true for the military application of ML. As a work of human
beings, it can be controlled in principle, shaped and adjusted to serve a good purpose.
Used in the right way, AI can supplement potential international norms restricting
the military use of AI with actual control, restriction and verification measures.
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The following sections offer preliminary thoughts on how this could be done and
what obstacles will be faced.

3 Best Practices and Lessons Learned from Other
Technologies

As a first step, it is helpful to look at established arms control measures for other
technologies in order to understand the lessons learned and the best practices that can
potentially be applied to AI. According to Mölling and Neuneck (2001), the different
forms of arms control measures that have been developed for chemical, biological, or
nuclear (CBN) weapons as well as conventional forces can be roughly broken down
into four groups:

• Declarative measures that are based on agreements of Do’s and Don’ts
• Usage-related measures and regulation
• Trade and proliferation measures
• Information exchange-based measures

Much like the tools developed for the militarization of cyberspace (Reinhold &
Reuter, 2019b), digital technologies lack a direct physical representation apart from
the interchangeable storage medium required for usage and proliferation-based
measures that try to count or track regulated items. The digital information of AI
components can be seamlessly copied, cloned, and distributed, which renders any
measure that requires physical objects impossible to apply and complicates verifi-
cation, but favors declaratory, regulatory and information exchange-based
approaches. This does not reduce the value of cooperative measures between states
or even possible agreements on trade controls of AI components based on company
declarations of the traded goods, but it limits the possibilities for controlling com-
pliance with agreements based on objectifiable information or even monitoring other
parties to an agreement without their consent or cooperation.

This aspect highlights the necessity of analyzing the technical foundation and
characteristics of AI and its components in order to identify features that can be
measured and compared. A similar analysis for cyber tools (Reinhold & Reuter,
2019a) concluded that in addition to the technological challenges that have been
mentioned, IT-related products actually do provide quantifiable parameters that
could be applied for arms control measures. These include:
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• The total power supply as well as the current power consumption of IT
infrastructures

• The available supply of cooling systems and their thermal power as well as the
current heat production of IT infrastructures

• The available network bandwidth capacities as well as the current flowrate of
transmitted data via monitored network connections

• The total extent of connections of monitored networks to other external civil or
commercial networks (the so-called peering) and their maximum possible trans-
mission performance

• The number of staff required for the maintenance of the IT systems

It is thus possible in principle to identify measurable and quantifiable aspects of AI
where action to implement arms control measures could be taken. As in the case of
cyber tools, the following section will unpack the development process or the life
cycle of AI to identify where in the development process action could be taken and
on which key components.

4 The AI Life Cycle: The Components of Artificial
Intelligence Applications

The previous chapters in this book and the many approaches used by the authors
alone made it clear that there are and have been many different forms of AI and
algorithmic approaches. In the current debates, especially the so-called neural
networks and their recent spin-off variant deep learning (see the introductory chapter
in this book for details) play a major role. These approaches, in combination with the
processing power of computers and microchips available nowadays, provide the
most powerful results and can mimic human intelligence for the first time, as was
envisaged in the early years of this field of research (Charniak, 2019). This domi-
nance has led to the fact that neural-network methods are already used synony-
mously with the term artificial intelligence or machine learning in many contexts,
even when the technological foundations differ (Kersting, 2018). Consequently, the
following structural approach focuses on neural networks, although it can be applied
analogously to most of the other forms and variants of AI. To provide a broader
perspective and avoid restricting the discussion of arms control to a specific tech-
nological field, the following text will use the term AI to include neural networks and
previous, current or even future forms of ML. Regardless of the different
approaches, all AI applications are marked by a specific life cycle: from their
development to their deployment. This life cycle concept reflects the fact that each
AI-enabled application passes through different transformation steps that apply
initial algorithm and design decisions in technical software components which are
then later combined in the final application.



Facilitating a concept from a report on the security of AI (Stiftung Neue
Verantwortung, 2019), the following life cycle illustrates these transformation
steps for a military AI application:
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1. Definition of the goal and the desired capabilities of the AI
2. Acquisition and preparation of the required training data
3. Choosing the required ML methods
4. Learning the implicit input-to-output rules (the so-called classifiers) during

training with the selected training data
5. Creating a fully trained AI system (the so-called model)
6. Deploying the AI into military systems or effectors
7. Applying the military system or effector, probably with a feedback loop and

retraining of the model

In these steps the following four different components are always employed in one
way or another as part of any AI application and its development:

A. The training data, that is, the dataset which is given to the algorithm to identify
patterns and regularities as well as used for the testing and evaluation of the AI.

B. The classifiers, that is, the representation of the training goal.
C. The model, that is, the final data structure which encompasses the learned

interrelations and information.
D. The effector, that is, the actual weapon that achieves the destructive effect under

the control of AI.

When debating the chances of implementing arms control measures for AI, it is very
important to distinguish systematically between these components, as each of them,
together with its associated transformation steps uses different technological
approaches and thus provides different technical aspects and characteristics of AI
applications that can be used to impose restrictions. This component-centric per-
spective is useful for maintaining a technical perspective on the possibilities and
challenges of AI for arms control. However, while the first three components relate
to the development process of the AI algorithm itself, the fourth component is related
to its application. As an AI does not directly contain but only controls effectors, it
will always be part of a larger military system that provides the actual effectors and
must thus be taken into account in arms control measures.

5 The Components of AI Development: Applying Tailored
Arms Control Measures

The AI components that have been identified will now be discussed in greater detail,
including analysis of the measurable and quantifiable aspects where arms control
initiatives can start and where potential technological thresholds between civilian
and military AI can be defined. After a review of possible lessons learned from fields



The different steps in this process can be performed by a single actor or distrib-
uted over different institutions or can be provided by commercial vendors or brokers.
As the data needs to be collected, processed, and curated in plain text—which means
that it cannot be encrypted during this step—it potentially provides options for
checking, comparing or verifying against defined principles. This provides the1

Arms Control for Artificial Intelligence 217

Fig. 1 Data transformation along AI lifecycle development stages. Source: Own illustration

of successful arms control initiatives that might be applied to AI, each subsection
that follows will discuss which arms control measures could be applied to each
particular component.

5.1 The Training Data

The training data is essential for every AI application that facilitates any kind of
learning and adjustment of inner processing capabilities. The data used for training
can take many different forms but, in most cases, involves a specific set of informa-
tion built from streams or batches of raw data and tailored to the specific learning
goal as well as the specific variant of learning algorithm. Organization of the data is
necessary in order to structure the amount of information presented to an AI
algorithm so that it contains enough relevant relationships that can be identified
and learned, but does not become too polluted with misleading or distracting
information. For example, an AI that is required to learn to identify IEDs (impro-
vised explosive devices) in visual information needs to be presented with different
images that in the best case contain all different kinds, sizes, shapes, forms of
construction, etc., of these devices. A well curated set of training data usually also
contains negative data items, in the present example images of devices or objects that
are not IEDs. The final curated data set is then usually split into different batches that
are used for the training of the AI, for testing the trained model (see Sect. 5.2) with
data that has not yet been used for training and which the algorithm has not yet seen
and a further batch to evaluate the quality of the model. Figure 1 presents an
overview of the different stages in the processing pipeline from raw data to appli-
cable training sets as given in an ENISA report (ENISA, 2020).

1Experience from civilian applications has shown, however, that datasets struggle with
unrecognized biases. If, for example, the dataset scarcely features people of color but focuses on
white males, the AI might struggle to recognize black faces (Buolamwini & Gebru, 2018).



following access points for control, regulation, or restriction in possible arms control
agreements:
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• Restrict the use of specific type of information or limit the scope of raw data
collections for specific military training goals, for example, for the identification
of human combatants.

• Monitor, regulate or restrict the use of specific raw data aggregation infrastruc-
tures (such as dedicated cloud services or sensor systems). In particular, the
gathering of training data for possible offensive military applications like auton-
omous weapon systems (AWS) could be restricted to a certain degree to real-
world military scenarios such as actual military operations—which is at least
impractical—or to dedicated military testing environments designed for such raw
data acquisition. The latter could even be passively monitored.

• As far as dedicated vendors, data brokers or curation services are concerned, their
commercial activities could be lawfully regulated, in conjunction with appropri-
ate transparency and compliance control measures. This would provide additional
measures for proliferation control.

• In addition to the limitation on use off specific raw data, it is also possible to
regulate specific kinds of data curation and preparation that reflect specific,
limited or unwanted training goals.

5.2 The Classifiers

The classifiers of an AI algorithm represent the training goal and in the case of
successful training the application quality of the AI system. The exact shape of the
classifiers depends strongly on the AI algorithm that is used, but they always reveal
the intent of the trainer. Although regulation of this kind of thing is always a
challenge for arms control, the following approaches are possible.

• Limit or prohibit the usage of specific types, ranges or characteristics of classi-
fications in order to limit the application scope of AI systems.

• Intentionally limit classifier quality in order to reduce the applicability and degree
of autonomy of AI systems and thus enforce closer human interaction and a wider
decision range, for example by allowing the classifier to identify humans but not
to provide an assessment of their combatant status, leaving this to human
judgment.

However, it is not the aim of arms control to check used datasets for biases but to prevent the use of
certain datasets which could be used for undesired weapon systems.
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5.3 The Model

The model of an AI system, as the trained state of an AI that is ready for application,
is the embodiment of the intended goals implicit to the training data and the selected
classifiers. With regard to the AI system itself, the model is the final product that
could be built into the designated external system which it supports or controls.
Whereas some models could be highly specific for a designated use case and external
system, others could be more off the shelf, generalized and applicable to a huge
variety of external applications. Thus, the following possible arms control measures
exist:

• Regulation or restriction of the proliferation of models trained for specific military
purposes such as distinguishing between civilians and human combatants.

• Control or prohibition of trade in models in conjunction with Wassenaar-like
information and transparency measures.

• Restriction of the use of specifically trained models, either for direct application
in an external system or for use as the basis of further AI training scenarios.

The ongoing trend to miniaturization and specialization of microchips that provide
among other things AI-optimized hardware also requires regulation. But since such
hardware parts are not designed for a specific use case but rather to be equipped with
a dedicated AI model, their regulation raises strong dual-use concerns, as will be
discussed below.

5.4 The Effectors

An AI-enabled application has—in contrast with most other militarily weaponized
technology—no direct effect on its environment. Instead, the AI will always be part
of larger weapon systems in which it controls specific aspects of the system or
controls it completely up to the release of the actual effector—tasks that mostly had
been or are still assigned to human operators. In many cases the weapon system itself
is not a new development and the AI is simply an extension or upgrade, enhancing
systems like air defense, uncrewed vehicles, battlefield command and control, or
cyber defense measures. This means that in the best-case scenario, these weapon
systems are already part of arms control agreements that can be adapted to include
AI-specific regulations. A second aspect of this relationship is that it directly relates
to the question of the limitations and boundaries of the autonomy of weapon systems
or trigger decisions and the debates about control of the acceptable extent of such
capabilities. In conclusion, the following arms control measures are applicable:

• Extend existing arms control treaties to include the enhancement or replacement
of components of the regulated items and technology with AI applications or
include these aspects in negotiations on the renewal of terminated treaties.
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• Include AI applications or systems that are intended to be integrated into weapon
systems in existing arms trade and non-proliferation agreements such as the
Wassenaar Arrangement (WA).

• Expand discussions, international security debates, and treaty negotiations on the
regulation of AWS to encompass various aspects of and potential integration of
AI and its consequences—including its regulation according to the International
Humanitarian Law (IHL).

6 Verification

The previous section has shown that there are indeed starting points for applying
hard arms control measures to AI if the dazzling term AI is broken down into
technically elementary components. However, probably the hardest part of applying
arms control measures for digital goods is the challenge of how compliance with
agreements can be verified (see the text by Schörnig, 2022). This also applies to AI
algorithms and the situation is additionally complicated by the black box character of
an AI (see the text by Verbruggen, 2022). This technical aspect arises from the fact
that the model of an AI does not provide a human-readable or comprehensible
representation of the learned states and the algorithmic micro-decisions it makes.
For current AI algorithms, all that can be seen is the output arising from a given
input, not the path that led to this conclusion. This raises the question of which parts
of an AI application could be controlled in terms of defined thresholds or pro-
hibitions. The following list presents initial ideas for dealing with this challenge. It
is not meant to be complete and is highly dynamic in view of emerging technical
developments in the field of AI.

• Training a clean model with the data that was allegedly used for the original AI
must create a model that works identically to and generates the same results as the
defined set of testing input. This makes it possible to verify whether an AI has
been trained with a set of training data that complies with agree-upon rules. This
method is limited to static AI applications that are not re-trained or otherwise
adapted during their real-life application, as adaptation changes their internal state
and thus undermines comparability.

• To verify that decisions made by an AI comply with certain rules, it is possible to
use a set of test data specifically constructed to contain triggering input which will
lead to a specific output. As a trivial example, an AI could be trained to identify
tanks in images and tag them as military targets under the restriction that it will
not tag other objects or even humans as targets and will untag tanks that are
relatively close to humans. A test set of images would include images of tanks as
well as humans in different surroundings and combinations. Tested against these
images, the AI must only tag the tanks that are not surrounded by humans.

• Newer technological developments of specific AI algorithms may provide the
technical means for the verification of decisions. A research trend involving
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so-called explainable AI (Vilone & Longo, 2020) provides a retraceable input-to-
output path which at least makes it possible to understand the technical process
that resulted in a particular decision and permits conclusions on the influence of
the training on the real-world performance that followed it. Even if this procedure
is not capable of identifying the effects of specific training input, it can provide
understanding of how specific clusters of training data modified the final model
and its data processing. Since such algorithms require the storage of additional
information as well as the necessary data processing, such features usually reduce
the overall performance of the AI algorithm. As it would unravel the black box
character as an important precondition for arms control, explainable AI can
provide an important tool, but will have to be made mandatory in agreements
in order to be implemented.

• A final challenge lies in the task of verifying whether an AI has been used as part
of an existing system without deep analysis of the operation system. In most cases
this is not accepted by treaty members. This resembles the often-cited and still
valid idea of the Turing test in connection with the choice between an AI and
some other form of deterministic algorithm with hard-wired instructions. Under
optimal conditions the latter will always provide an output that is predictable, as it
can be calculated externally as long as the hard-wired instructions are known. An
AI on the other hand is designed to provide the best possible approximations to
the exact result for an input that has not been used during the training phase.
These differences between the actual and the exact result might be used to identify
the application of an AI.

In the military there is a saying it takes one to get one meaning that in certain
situations symmetry is the only possible response or is needed to counter a specific
capability. This poses the interesting challenge of using an AI to verify other AI. As
the algorithms involved in ML are—in addition to other uses—perfectly applicable
to detecting patterns within unknown data or separating and classifying complex
information, it is at least theoretically possible to train a verification AI with
the output from another AI that needs to be monitored. The results yielded by the
verification AI could then make it possible to draw conclusions concerning the
learned processing rules of the AI being checked or the training input it is assumed
to have received. Even if such thinking is futuristic at present and applicable
measures have yet to be developed, it could serve as the basis for establishing
measures for controlling compliance with agreed rules.

7 Pre-conditions and Pitfalls for Arms Control

Many of the ideas discussed and considered above are currently still no more than
theory and appropriate technical approaches need to be developed, tested, and—
conceivably if ever—installed as measures for arms control. This is, on the one hand,
a direct result of the fact that AI is a relatively new topic in military technology,
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whose capabilities have been boosted by the development of more efficient algo-
rithms alongside dedicated hardware. On the other hand, its implications and
limitations are not as yet fully understood and arms control measures for AI
technology must consider the specific conditions discussed above.

The first of these is the obvious and presumably most influential issue of the
highly dual-use character of AI and ML. As AI and its components are inherently
only parts that are included in more comprehensive systems for specific tasks, the
regulation of explicitly military AI will turn out to be inefficient. Although AI
applications that are specifically trained with military-grade information and
intended to cover specifically military use cases presumably either already exist or
will eventually do so, in most cases more generic AI components will be produced
and acquire capacities (such as image recognition, information clustering, etc.) that
will later only need to be adapted to specific tasks. This aspect also relates to
AI-specific hardware that is experiencing strong demand and a corresponding
driving force in civil commercial products such as consumer electronics. The further
miniaturization of such generically applicable technology will probably further
strengthen a trend toward cheap off-the-shelf hardware that is ready to be deployed.

A further aspect relates to the current technological imbalance of AI technology.
Although a great deal of groundwork has been carried out in recent decades and
published in scientific journals and conference proceedings, the current trend in the
implementation of AI in real products is being driven by a small number of
technological global players that hold the intellectual property rights. It is foresee-
able that these companies, and with them the states where they operate, will try to
defend this head start in order to preserve the advantages they have gained from this
technology in both commercial and also military domains. This imbalance between
the haves and the have-nots will probably complicate the establishment of arms
control measures as it has to deal with inherently opposing interests. In addition, AI
research and its development have a strong dual-use character. As the actual use of
an AI is primarily determined by its training, the underlying algorithms involved in
how exactly the model is developed on the basis of input information or how
classifiers are created and applied is the same for military as well as civil uses and
application. This aspect also includes dedicated AI hardware such as specific
microchips that are optimized to perform the required AI calculations or feature a
specific technical design that is adjusted to AI models such as neural networks. This
complicates the regulation of AI algorithms and their implementation in specific
hardware.

Another issue relates to the problems that have already been discussed regarding
the technical challenges involved in verifying AI arms control measures. The
characteristics of digital goods provide many chances and opportunities for hiding
non-compliant behavior while simultaneously hindering effective control mecha-
nisms. In addition, the availability of related commercial products makes it easier to
establish a dedicated domestic industry for military-grade AI. This might either
prevent states from joining such toothless agreements or—on the contrary—might
even offer states an incentive to dishonestly sign treaties safe in the knowledge that



non-compliance is not trackable. This challenge may be eased with further techno-
logical developments but so far is a game stopper.

The final aspect that will probably hinder the establishment of arms control
measures for AI concerns is the perception of this technology as mostly
unproblematic and not dangerous enough. In most proposals, research projects or
statements from military decision-makers, AI is seen as an enabler for military
systems or as an enhancement for human tasks. Although debates in other areas
such as lethal autonomous weapon systems (LAWS) discuss the threats and prob-
lems that arise from decisions made autonomously by machines, these concerns have
so far not been included in AI debates to a sufficient degree. As long as AI is not
perceived as another aspect of the same problem, there will not be sufficient
incentives for states to debate its regulation and the limitation of its military
application.

8 Confidence-Building Measures for Military AI
Applications: An Alternative?

The preceding sections have shown that the application of hard and verifiable arms
control measures is not impossible. But just starting to think about the possibilities
requires extensive technical knowledge—knowledge that arms control experts often
do not possess. Consequently, the first step toward actual arms control agreements
has often been the establishment of confidence via CBMs. In most cases this step has
involved, among other things, the exchange of information about national security
interests and concerns about shifting military capabilities resulting from technolog-
ical developments as well as technical details of new developments. These measures
for achieving transparency are intended to allow potential adversaries to gain an
understanding of the military impact of the adoption of new technological develop-
ments as well as of their limitations. With regard to the influence of AI on military
developments, the following details of the different components of an AI could be
made available as part of CBMs in order to understand its impact:
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• Samples of the training data related to the intended capability of the AI
• Training environments or data aggregations sources
• The classifiers and the features that are intended to be detected and processed for

the output of the AI
• Details of the application of the AI and the facilitation of its output with regard to

the complexity and the degree of freedom that the AI’s decisions are used for
• Details of the system that the AI is part of (e.g., effectors, military relevance, and

facilitation)
• Information on the structural changes in tactics or on organizational changes

where AIs are used to enhance human decisions or replace them
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Regarding the similarities that AI shares with other digital technologies, it is
important to highlight the contrasting conceptualizations of AI in existing debates
on CBMs for cybersecurity and cyberspace in international forums like the Organi-
zation for Economic Co-operation and Development (OECD) or the United Nations
(UN). As military capabilities are mostly shaped by human skills in cooperation with
intelligence-gathering operations, the debates on cyber CBMs mostly cover its
impact on military defensive and offensive strategies, but seldom involve technical
details or technological knowledge. On the other hand, the military development and
application of AI is driven far more strongly by active scientific research on AI
algorithms and dedicated hardware and is thus influenced by issues of intellectual
property and maintaining a technological edge in knowledge. Thus, although it
might be meaningful to promote existing cyber forums on CBMs, these debates
will probably face greater reluctance by participating parties to share the technical
details mentioned above and may have to focus more on strategic goals.

9 Conclusion: Or How AI May Develop and What Arms
Control Can Do About It

When looking at current trends in AI, it is safe to conclude that one way or another
AI will find its way into military applications. Even if the current level of attention is
reduced or has to face the inherent limitations of this technology, the normative
power of the factual as well as the money currently being spent on Research and
Development (R&D) will bring the world AI-enabled military systems. This will
probably happen regardless of whether they actually perform better, as long as they
promise to shorten the sensor-to-trigger loop or otherwise seem to supersede human
cognition and reaction limitations. On the other hand, it is doubtful that we will see
any kind of an envisage complex AI systems that integrates and controls complex
battlefield activities in the near future because the complexity of such activities
conflicts with the single-purpose performance of AI algorithms. At best, there will be
an integration of multiple specific AI applications, each optimized and facilitated for
a dedicated task that will be integrated into such systems, much as is already the case
for self-driven cars that consist of multiple interoperating AI applications. Another
issue is the currently strongly divided technology ownership. It is quite possible that,
regardless of its actual usage, the most advanced AI countries will continue to perfect
AI capabilities or even further extend them in order to maintain their current
advantage. This could result in strategic benefit or be at least a bargaining chip in
international power struggles. In addition, as AI is—in contrast, to for example the
cyberspace area—strongly connected with intellectual property rights and techno-
logical research and knowledge, this will probably be closely accompanied by
economic and trade restrictions. As AI hardware becomes more and more important
and a question of performance, such issues could even spill over to the current
international disputes and struggles to create national sovereignty over microchip



design and production (Kleinhans & Baisakova, 2020). From the standpoint of
military technology, the ongoing trend toward miniaturization of computation
devices that also includes AI hardware may foster and accelerate a shift from current
military R&D projects involving large monolithic AI systems for complex tasks to
the integration of dedicated AI capabilities into small military systems and consum-
ables such as small arms, land mines and ammunition. As small arms are still the real
weapon of mass destruction (WMD), AI-enabled small arms with self-guiding
ammunition might be even more terrifying and deadly.
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This leaves a great deal of work for further arms control approaches and requires
substantial convincing of national and international actors. It probably also means
that in the near future AI will become one of the many factors that need to be
discussed and considered in connection with many existing weapon systems and
military capabilities. This could also increase the necessity of including AI in
existing arms control treaties. Measures for AI face issues similar to those involved
in the militarization of cyberspace, where many established arms control approaches
have not worked and have thus led to a need for new technical solutions and tools for
verification. As AI and cyberspace share a great deal of underlying technology it
probably makes sense to combine discussions and the development of arms control
tools based on these technologies. On the other hand, AI-enabled applications or
military systems will still rely on small-scale single-problem AI solutions so that
there will still be opportunity for approaches to its regulation that focus on specific
details, technical features, or capabilities, without the necessity of tackling the sci-fi
vision of a super-AI. This also means that verification measures—despite the
problems mentioned—could be built upon very detailed features, which, from a
technical perspective, leaves room for optimism. And that is something that arms
control has always needed.
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